欧拉函数的一道练习题(附加容斥做法)

jzd同学今天告诉了我们一道关于欧拉函数的题,一开始觉得毫无头绪,当身旁的erge同学切完开始装(xiao)逼(zhang)的时候,他无意间透露的欧拉函数四个字启发了我,最近做了一道很相似的题HDU1695 这道题就是让你求x 属于[a,b], y 属于[c,d]gcd(x,y)==k 的x,y的个数,这道题显然是一道容斥原理的裸题,我们把x和y都同时div一个k,然后就是容斥加欧拉函数啦。

题面

给定两个正整数n和m,问有多少个x满足1≤x≤n 且 gcd(n,x)≥m。题目有多组数据。

一句话题意非常的舒服,看完题应该第一个想法就是容斥,然而当时和jzd讨论的时候他说有问题让我再想想,我想了半天也没想出来哪里有问题,于是我便丢在那没管了,回家的路上和thkkk一起讨论了下发现容斥貌似是可以的,复杂度也是对的,回家想了想细节打了一下,细节有点多,然后跑得比欧拉函数的还要快。

先讲讲容斥的做法,我们考虑n的每一个约数d,如果d是>=m的那么d在[1,n]中所有的倍数都是可行的,那么答案加上n/d,但是会存在d被重复计算的问题,我们果断搬上容斥原理,我所记得的容斥原理貌似就是奇加偶减(蒟蒻只知道这个)然后我想到的便是用一个二进制枚举每个因子的选择情况,每次乘起来,得到一个lcm,如果使用的因子个数为奇数那么贡献为正,否则为负,贡献为n/lcm。不多说了,在纸上模拟下就知道了。

/*************************************************************************
    > File Name: GGG2.cpp
    > Author: Drinkwater-cnyali
    > Created Time: 2017/8/25 23:58:07
************************************************************************/

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>

using namespace std;

#define REP(i, a, b) for(register int i = (a), i##_end_ = (b); i <= i##_end_; ++ i)
#define DREP(i, a, b) for(register int i = (a), i##_end_ = (b); i >= i##_end_; -- i)
#define mem(a, b) memset((a), b, sizeof(a))

typedef long long LL;

LL read()
{
    LL sum = 0, fg = 1; char c = getchar();
    while(c < '0' || c > '9') { if (c == '-') fg = -1; c = getchar(); }
    while(c >= '0' && c <= '9') { sum = sum * 10 + c - '0'; c = getchar(); }
    return sum * fg;
}

const int maxn = 100000;
LL T,n,m;
LL cnt,a[maxn],b[maxn],num;

void Div()
{
    for(int i = 1; i * i <= n; ++i)
    {
        if(n % i)continue;
        if(i * i != n)if(n/i>=m)a[++cnt] = n/i;
        if(i>=m)a[++cnt] = i;
    }
}

LL gcd(LL a,LL b)
{
    return b == 0 ? a : gcd(b , a % b);
}

int main()
{
    T = read();
    while(T--)
    {
        n = read(),m = read();
        cnt = 0;Div();num = 0;
        sort(a+1,a+1+cnt);
        REP(i,1,cnt)
        {
            int flag = 0;
            REP(j,1,i-1)
                if(a[i]%a[j]==0){flag = 1;break;}
            if(!flag)b[++num] = a[i];
        }
        LL ans = 0;
        REP(i,1,(1<<num)-1)
        {
            int cc = __builtin_popcount(i);
            LL mlt = 1;
            REP(j,1,num)
                if(i & 1<<(j-1))
                {
                    mlt = mlt / gcd(mlt,b[j]) * b[j];
                    if(mlt > n)break;
                }
            if(cc&1)ans += n/mlt;
            else ans -= n/mlt;
        }
        cout<<ans<<endl;
    }
    return 0;
}

接下来是欧拉函数的做法,欧拉函数的本质是φ(n)为小于n与n互质的个数,gcd(n,x)==1 知道这个就很好想了,我们考虑每一个大于等于m的因子,我们令gcd(n,x)==d n,x同时除d那么就是n/d的φ值,是不是很巧妙?

/*************************************************************************
    > File Name: GGG.cpp
    > Author: Drinkwater-cnyali
    > Created Time: 2017/8/25 23:24:26
************************************************************************/

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>

using namespace std;

#define REP(i, a, b) for(register int i = (a), i##_end_ = (b); i <= i##_end_; ++ i)
#define DREP(i, a, b) for(register int i = (a), i##_end_ = (b); i >= i##_end_; -- i)
#define mem(a, b) memset((a), b, sizeof(a))

typedef long long LL;
LL read()
{
    LL sum = 0, fg = 1; char c = getchar();
    while(c < '0' || c > '9') { if (c == '-') fg = -1; c = getchar(); }
    while(c >= '0' && c <= '9') { sum = sum * 10 + c - '0'; c = getchar(); }
    return sum * fg;
}

LL get_phi(LL x)
{
    LL res = x;
    for(int i = 2; i * i <= x; ++i)
    {
        if(x % i == 0)
        {
            res = res / i * (i - 1);
            while(x % i== 0)x /= i;
        }
    }
    if(x > 1)res = res/ x * (x - 1);
    return res;
}

LL T,n,m;

int main()
{
    T = read();
    while(T--)
    {
        n = read(),m = read();
        LL ans = 0;
        for(int i = 1; i * i <= n; ++i)
        {
            if(n % i)continue;
            if(n/i >= m && i * i != n)ans += get_phi(i);
            if(i >= m) ans += get_phi(n/i);
        }
        cout<<ans<<endl;
    }
    return 0;
}

转载于:https://www.cnblogs.com/brodrinkwater/p/7527981.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值