微型计算机的记忆部件是什么,微型计算机技术 第一章部分答案

博客内容涉及二进制补码表示法及其在计算中的应用。解释了如何通过补码来确定数值的正负,并给出了多个补码运算实例,包括溢出和进位的判断。内容涵盖负数和正数的补码表示,以及八进制数的补码运算是否产生溢出的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【P】补=1000 0000 0000 0000

解:(1)由已知可得X为负数

【X】反=1111 1111 1111 1111

【X】原=1000 0000 0000 0000

X=-32768

(2)由题意可知Y为负数

【Y】反=1111 1111 1111 1110

【Y】原=1000 0000 0000 0001

Y =-1

(3)由题意可知z为正数

【Z】原=0111 1111 1111 1111B=32767

(4)由题意可知W为负数

【W】反=1110 1111 1111 1111

【W】原=1001 0000 0000 0000

W=-4096

(5)【Q】原=0100 0000 0000 0000B

Q =16384

(6)由题意可知P为负数

【P】反=1000 0000 0000 0000

【P】原=1111 1111 1111 1111

P=-32767

1.20请判断以下八进制数补码运算是否会产生溢出,或者是否产生进位,为什么?

(1)-23+78 (2)-45-92 (3)89+30 (4)78-52 (5)83-(-30)(6)126-(-34)(7)108+34

解(1)-23+78=【11101001】补+【01001110】补

=1 0011 0111

符号位与原计数数相同,不溢出。产生了进位。

(2)-45-92=【11010011】补+【10100100】补

=1 0111 0111

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值