序
【问题背景】
zhx 给他的妹子们排序。
【问题描述】
\(zhx\) 有 \(N\) 个妹子, 他对第 \(i\) 个妹子的好感度为\(a_i\), 且所有\(a_i\),两两不相等。 现在 \(N\) 个妹子随意站成一排, 他要将她们根据好感度从小到大排序。 他使用的是冒泡排序算法(详见下)。如果排序过程中好感度为\(a_i\)的妹子和好感度为\(a_j\)的妹子发生了交换, 那么她们之间会发生一场口角。
现在 \(zhx\) 想知道, 给定妹子的初始排列, 在排序完成后, 最多存在多少个妹
子, 她们任意两人之间没发生过口角。
冒泡排序有一个特点:第i次使得第i大/小的数归位。同时大的数不会和小的数交换位置
根据这个特点,我们就知道如果一个子序列是递增的,那么都不会进行交换。
所以这个题我们求一个最长上升子序列就可以了。
将问题转化为模型后就是模板le
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using std::min;
const int maxn=101000;
int length[maxn];
int mf;
void ins(int val)
{
int l=1,r=mf+1;
while(l<r)
{
int mid=(l+r)>>1;
if(length[mid]>val)
r=mid;
else
l=mid+1;
}
if(l==mf+1)
{
length[l]=val;
mf++;
}
else length[l]=min(length[l],val);
}
int main()
{
memset(length,100,sizeof(length));
int n;
scanf("%d",&n);
int a;
for(int i=1;i<=n;i++)
{
scanf("%d",&a);
ins(a);
}
printf("%d",mf);
}