java容器类2:Map及HashMap深入解读

Java的编程过程中经常会和Map打交道,现在我们来一起了解一下Map的底层实现,其中的思想结构对我们平时接口设计和编程也有一定借鉴作用。(以下接口分析都是以jdk1.8源码为参考依据)

java.util.map类图

1. Map

An object that maps keys to values.  A map cannot contain duplicate keys;
each key can map to at most one value.

Map提供三种访问数据的方式: 键值集、数据集、数据-映射,对应下表中的标记为黄色的三个接口。public interface Map<K, V>

 
 
方法名描述
void clear()从此映射中移除所有映射关系(可选操作)。
boolean containsKey(Object key) 如果此映射包含指定键的映射关系,则返回 true。
boolean containsValue(Object value) 如果此映射将一个或多个键映射到指定值,则返回 true。
Set<Map.Entry<K,V>> entrySet()返回此映射中包含的映射关系的 Set 视图。
boolean equals(Object o) 比较指定的对象与此映射是否相等。
V get(Object key) 返回指定键所映射的值;如果此映射不包含该键的映射关系,则返回 null。
int hashCode()返回此映射的哈希码值。
boolean isEmpty()如果此映射未包含键-值映射关系,则返回 true。
Set<K> keySet()返回此映射中包含的键的 Set 视图。
V put(K key, V value) 将指定的值与此映射中的指定键关联(可选操作)。
void putAll(Map<? extends K,? extends V> m) 从指定映射中将所有映射关系复制到此映射中(可选操作)。
V remove(Object key) 如果存在一个键的映射关系,则将其从此映射中移除(可选操作)。
int size()返回此映射中的键-值映射关系数。
Collection<V> values()返回此映射中包含的值的 Collection 视图。

在Java8中的Map有增添了一些新的接口不在上述表格之中,这里不一一列举。

这里涉及到一个静态内部接口:Map.Entry<K,V> ,用于存储一个键值对,该接口中设置set和get键值和value值的接口。

image

所以Map中存储数据都是以这种Entry为数据单元存储的。

2. AbatractMap

AbstractMap中增加了两个非常重要的成员变量:

transient Set<K> keySet;
transient Collection<V> values;

通过这两个成员变量,我们已经知道Map是如何存储数据的了:键值存入keySet中,value存入values中。(由于Map需要保证键值的唯一性所以选择Set作为键值的存储结构,而Value则对此没有任何要求所以选择Collection作为存储结构)

AbstractMap实现了Map中的部分接口,都是通过调用接口:Set<Entry<K,V>> entrySet() 实现的,而该接口的具体实现却留给了具体的子类。以下代码列出了equal()方法的具体实现:

 public boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
        Map<?,?> m = (Map<?,?>) o;
        if (m.size() != size())
            return false;

        try {
            Iterator<Entry<K,V>> i = 
entrySet().
iterator();
            while (i.hasNext()) {
                Entry<K,V> e = i.next();
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(m.get(key)==null && m.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(m.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused) {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

        return true;
    }

3. HashMap

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable除了继承了AbstractMap中HashMap中的两个成员变量以外,又增加了如下几个成员变量:transient Set<Map.Entry<K,V>> entrySet;transient Node<K,V>[] table;transient int size;transient int modCount;作为table存储的基本类型,Node类的源码如下:

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
View Code

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。

建议看HashMap源码前了解一些散列表(HashTable)的基础知识:http://www.cnblogs.com/NeilZhang/p/5651492.html

包括:散列函数、碰撞处理、负载因子等。

3.1 hash值计算

static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

首先获取key值的hash值(每个类都有计算hash值的方法),然后将该hash值的高16位异或低16位即得到散列值。

3.2 hash散列函数

       通过hash函数可以得到key值对应的hash值,那么如何通过该hash将key散列到hashtale中呢?下面再介绍一个函数:

对应的运算如下所示:length为table的长度(通常选择2^n)

static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);               //第三步 取模运算
}

hashMap哈希算法例图

这里的取模运算等于 hash%length ,然而&运算比%运算的效率更高。

3.3 碰撞算法:HashTable+链表+红黑树

当hash散列函数对不同的值散列到table的同一个位置该如何处理?何时需要扩容table的大小,分配一个更大容量的table?

下面这张网络上流行的图基本解释了当发生碰撞时的处理办法,

hashMap内存结构图

1、HashMap的主要存储为HashTable

2、当散列到的位置已经有元素存在时,通过链表将当前元素链接到table中的元素后面

3、当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能。

红黑树的相关知识可以参考:算法导论 第三部分——基本数据结构——红黑树

3.4 hashtable的扩容

这里先列出了HashMap源码中的几个常量:

/**
     * 默认hashtable的长度 16
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     *  hashtable的最大长度
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * hashtable的默认负载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 当Hashtable中链表长度大于该值时,将链表转换成红黑树
     */
    static final int TREEIFY_THRESHOLD = 8;

HashMap构造函数可以传入table的初始大小和负载因子的大小:

  public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = 
tableSizeFor(initialCapacity);
    }

这里有一个很巧妙牛逼的tableSizeFor算法:返回一个大于等于且最接近 cap 的2的幂次方整数,如给定9,返回2的4次方16。它的具体实现(全部通过位运算完成):

/**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

那么关键的问题,什么时候会增大table的容量呢?原来table中的Node如何重新散列到新的table中?下面围绕这两个问题展开:

HashMap中有个成员变量 : threshhold,当table中存放的node个数大于该值时就会调用resize()函数,给table重新分配一个2倍的容量的数组(具体可能涉及很多边界问题),并且将原来table中的元素重新散列到扩容的新表中(个人猜想这过程应该是非常耗时的,所以为了避免HashTable不断扩容的操作,使用者可以在构造函数的时候预先设置一个较大容量的table)。

那么这个threshhold的值时如何计算的呢?

1、构造函数的时候赋值: this.threshold = tableSizeFor(initialCapacity);

2、resize()的时候 threshold也会随着table容量的翻倍而翻倍。

3、threshold 的初始值: DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY

这里有个疑问: 通过HashMap()和HashMap(int,int)两种构造函数得得到的threshold值计算方法不同,前一种永远是table.length * 0.75 第二种是通过tableSizeFor(cap)计算所得,为table.length 这时负载因子似乎失去了意义?

HashTable重新散列:

当重新分配了一个table时,需要将原来table中的Node重新散列到新的table中。源码中针对hashtable、链表、红黑树中节点分别作了处理。

1. 如果是table中的值(next为null):直接映射到大的table中,刚看的时候没理解为什么不需要判断如果新位置已经有元素怎么办?

这里不需要考虑大的table中该节点已经有Node了,比如和value | 1111 的元素只有一个(table中不是链表),那么 value | 11111 的元素也一定只有一个。(1111为扩容前table长度减1,11111位扩容后table长度减1)

在扩充HashMap的时候,不需要像JDK1.7的实现那样

2、 如果是链表中的值,则重新散列后他们可能有两种不同的值(增加了一个异或位),需要重新散列到两个位置。

java1.8 重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,HashMap的源码真的有太多精妙的地方了。

3、如果是红黑树中的节点,重新散列后的值也可能出现两种,需要对红黑数进行操作,重新散列(这一块没有具体看源码)。

resize()函数源码:

 final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
View Code

3.5 put方法分析

      介绍了上面的这么多下面分析put函数就不是那么难了:

abc

JDK1.8HashMap的put方法源码如下:

1 public V put(K key, V value) {
 2     // 对key的hashCode()做hash
 3     return putVal(hash(key), key, value, false, true);
 4 }
 5
 6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 7                boolean evict) {
 8     Node<K,V>[] tab; Node<K,V> p; int n, i;
 9     // 步骤①:tab为空则创建
10     if ((tab = table) == null || (n = tab.length) == 0)
11         n = (tab = resize()).length;
12     // 步骤②:计算index,并对null做处理 
13     if ((p = tab[i = (n - 1) & hash]) == null)
14         tab[i] = newNode(hash, key, value, null);
15     else {
16         Node<K,V> e; K k;
17         // 步骤③:节点key存在,直接覆盖value
18         if (p.hash == hash &&
19             ((k = p.key) == key || (key != null && key.equals(k))))
20             e = p;
21         // 步骤④:判断该链为红黑树
22         else if (p instanceof TreeNode)
23             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24         // 步骤⑤:该链为链表
25         else {
26             for (int binCount = 0; ; ++binCount) {
27                 if ((e = p.next) == null) {
28                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
29                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
30                         treeifyBin(tab, hash);
31                     break;
32                 }
                    // key已经存在直接覆盖value
33                 if (e.hash == hash &&
34                     ((k = e.key) == key || (key != null && key.equals(k))))                                          break;
36                 p = e;
37             }
38         }
39
40         if (e != null) { // existing mapping for key
41             V oldValue = e.value;
42             if (!onlyIfAbsent || oldValue == null)
43                 e.value = value;
44             afterNodeAccess(e);
45             return oldValue;
46         }
47     }

48     ++modCount;
49     // 步骤⑥:超过最大容量 就扩容
50     if (++size > threshold)
51         resize();
52     afterNodeInsertion(evict);
53     return null;
54 }

 

HashMap实际使用中注意点:

当HashMap的key值为自定义类型时,需要重写它的 equals() 和 hashCode() 两个函数才能得到期望的结果。如下例所示:

public class PhoneNumber
{
    private int prefix; //区号
    private int phoneNumber; //电话号

    public PhoneNumber(int prefix, int phoneNumber)
    {
        this.prefix = prefix;
        this.phoneNumber = phoneNumber;
    }

    @Override
    public boolean equals(Object o)
    {
        if(this == o)
        {
            return true;
        }
        if(!(o instanceof PhoneNumber))
        {
            return false;
        }
        PhoneNumber pn = (PhoneNumber)o;
        return pn.prefix == prefix && pn.phoneNumber == phoneNumber;
    }

    @Override
    public int hashCode()
    {
        int result = 17;
        result = 31 * result + prefix;
        result = 31 * result + phoneNumber;
        return result;
    }
}

这里有个疑问: 为什么在put() 一个元素时,不直接调用equals() 判断集合中是否存在相同的元素,而是先调用 hashCode() 看是否有相同hashCode() 元素再通过equal进行确认?

答: 这里是从效率的方面考虑的,一个集合中往往有大量的元素如果一个个调用equals比较必然效率很低。如果两个元素相同他们的hashCode必然相等(反之不成立),先调用hashCode可以过滤大部分元素。

 

HashMap与ArrayMap的区别

        由于HashMap在扩容时需要重建hash table 是一件比较耗时的操作,为了优化性能Androd的系统中提供了ArrayMap,当容量较小时ArrayMap的性能更优。

       ArrayMap使用的是数组存放key值和value值,扩容时只需要重建一个size*2的数组让后将之前的数据拷贝进去,再新添新数据。但是ArrayMap也有缺点: 它在每次put数据时,如果这个key值map中不存在,那么都可能会涉及到数组的拷贝操作。

      HashMap每次put、delete操作(不涉及扩容或者容量重新分配)耗时较小,但是扩容操作时较耗时。

      ArrayMap每次put、delete操作耗时,但是扩容操作不那么耗时。

参考:
http://www.cnblogs.com/NeilZhang/p/5657265.html
http://www.importnew.com/20386.html
ArrayMap :https://blog.csdn.net/hp910315/article/details/48634167

转载于:https://www.cnblogs.com/NeilZhang/p/8577991.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值