【有上下界网络流】【ZOJ】2314 Reactor Cooling

本文介绍了一种处理有上下界的无源汇网络流问题的算法实现,通过构造特殊的网络结构来解决循环流问题,并提供了完整的C++代码示例。

【算法】有上下界网络流-无源汇(循环流)

【题解】http://www.cnblogs.com/onioncyc/p/6496532.html 

//未提交
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1000,maxm=100000,inf=0x3f3f3f3f;
struct edge{int from,v,flow;}e[maxm];
int S,T,TT,n,m,tot=1,first[maxn],cur[maxn],in[maxn],d[maxn],q[1010],lows[maxm];
void insert(int u,int v,int w)
{
    tot++;e[tot].v=v;e[tot].flow=w;e[tot].from=first[u];first[u]=tot;
    tot++;e[tot].v=u;e[tot].flow=0;e[tot].from=first[v];first[v]=tot;
}
bool bfs()
{
    memset(d,-1,sizeof(d));
    int head=0,tail=1;q[0]=S;d[S]=0;
    while(head!=tail)
     {
         int x=q[head++];if(head>1000)head=0;
         for(int i=first[x];i;i=e[i].from)
          if(d[e[i].v]==-1&&e[i].flow)
           {
               d[e[i].v]=d[x]+1;
               q[tail++]=e[i].v;
               if(tail>1000)tail=0;
          }
     }
    return d[T]!=-1;
}
int dfs(int x,int a)
{
    if(x==T||a==0)return a;
    int flow=0,f;
    for(int& i=cur[x];i;i=e[i].from)
     if(d[e[i].v]==d[x]+1&&(f=dfs(e[i].v,min(a,e[i].flow)))>0)
      {
          e[i].flow-=f;
          e[i^1].flow+=f;
          a-=f;
          flow+=f;
          if(a==0)break;
      }
    return flow;
}
int main()
{
    scanf("%d",&TT);
    while(TT--)
     {
         memset(first,0,sizeof(first));
         memset(in,0,sizeof(in));
         tot=1;
         scanf("%d%d",&n,&m);
         for(int i=1;i<=m;i++)
          {
              int u,v,w;
              scanf("%d%d%d%d",&u,&v,&lows[i],&w);
              in[u]-=lows[i];in[v]+=lows[i];
              insert(u,v,w-lows[i]);
         }
        S=0,T=n+1;
        for(int i=1;i<=n;i++)
          {
             if(in[i]>0)insert(S,i,in[i]);
             if(in[i]<0)insert(i,T,-in[i]);
          }
         while(bfs())
          {
              for(int i=0;i<=n+1;i++)cur[i]=first[i];
            dfs(S,inf);
         }
        bool ok=1;
        for(int i=first[S];i;i=e[i].from)
         if(e[i].flow)ok=0;
        if(ok)
         {
             printf("YES\n");
             for(int i=2;i<=m*2;i+=2)
              printf("%d\n",e[i^1].flow+lows[i>>1]);
         }
        else printf("NO\n");
     }
    return 0;
}
View Code

转载于:https://www.cnblogs.com/onioncyc/p/6568136.html

内容概要:本文详细介绍了一个基于Java后端与Vue前端的可解释性黑盒模型解释与可视化系统的设计与实现。系统旨在解决人工智能模型“黑箱”问题,通过集成LIME、SHAP、特征重要性评估等主流可解释性算法,实现对复杂模型决策过程的透明化分析。项目采用Spring Boot构建后端服务,提供用户认证、数据与模型管理、异步任务调度、解释算法调用及结果存储等功能;前端使用Vue配合Element UI和ECharts实现交互式可视化展示,支持特征贡献条形图、热力图、决策路径等多维度呈现。系统具备高可用、可扩展、安全合规等特点,适用于金融、医疗、工业、司法等多个领域。文档涵盖项目背景、架构设计、核心代码实现、数据库设计、API接口规范及部署方案,并提供了完整的前后端代码示例和模块封装。; 适合人群:具备Java和Vue开发基础的中初级研发人员、算法工程师、数据分析师以及从事AI系统开发与应用的相关技术人员。; 使用场景及目标:①构建面向多行业的AI模型可解释性服务平台,提升模型透明度与决策信任度;②实现黑盒模型的特征贡献分析与可视化展示,支持模型优化与合规审查;③学习前后端分离架构下复杂系统的设计与开发流程,掌握异步任务处理、RESTful API设计、数据可视化等关键技术。; 阅读建议:建议读者结合文档中的代码示例与系统架构图,逐步理解各模块功能与交互逻辑。可优先运行提供的完整代码示例,熟悉系统整体流程后再深入研读核心算法实现与前后端集成细节。在学习过程中,应重点关注异步任务调度、解释算法适配、前后端数据交互与安全控制等关键设计,以便在实际项目中进行复用与扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值