Pocket Cube is a 3-D combination puzzle. It is a 2 × 2 × 2 cube, which means it is constructed by 8 mini-cubes. For a combination of 2 × 2 mini-cubes which sharing a whole cube face, you can twist it 90 degrees in clockwise or counterclockwise direction, this twist operation is called one twist step.
Considering all faces of mini-cubes, there will be totally 24 faces painted in 6 different colors (Indexed from 0), and there will be exactly 4 faces painted in each kind of color. If 4 mini-cubes' faces of same color rely on same large cube face, we can call the large cube face as a completed face.
Now giving you an color arrangement of all 24 faces from a scrambled Pocket Cube, please tell us the maximum possible number of completed faces in no more than N twist steps.
Index of each face is shown as below:
Input
There will be several test cases. In each test case, there will be 2 lines. One integer N (1 ≤ N ≤ 7) in the first line, then 24 integers Ci seperated by a sinle space in the second line. For index 0 ≤ i < 24, Ci is color of the corresponding face. We guarantee that the color arrangement is a valid state which can be achieved by doing a finite number of twist steps from an initial cube whose all 6 large cube faces are completed faces.
Output
For each test case, please output the maximum number of completed faces during no more than N twist step(s).
Sample Input
1 0 0 0 0 1 1 2 2 3 3 1 1 2 2 3 3 4 4 4 4 5 5 5 5 1 0 4 0 4 1 1 2 5 3 3 1 1 2 5 3 3 4 0 4 0 5 2 5 2
Sample Output
6 2
一共是12种变化,但是有等价的,最后每一纬是2种变换,一共是6种变换。
#include <iostream> #include <string> #include <string.h> #include <map> #include <stdio.h> #include <algorithm> #include <queue> #include <vector> #include <math.h> #include <set> #define Max(a,b) ((a)>(b)?(a):(b)) #pragma comment(linker, "/STACK:16777216") using namespace std ; typedef long long LL ; struct Cube{ int a[24] ; void out(){ printf(" %d%d \n",a[0],a[1]) ; printf(" %d%d \n",a[2],a[3]) ; printf("%d%d%d%d%d%d\n",a[4],a[5],a[6],a[7],a[8],a[9]) ; printf("%d%d%d%d%d%d\n",a[10],a[11],a[12],a[13],a[14],a[15]) ; printf(" %d%d \n",a[16],a[17]) ; printf(" %d%d \n",a[18],a[19]) ; printf(" %d%d \n",a[20],a[21]) ; printf(" %d%d \n",a[22],a[23]) ; puts("") ; } int complete_face(){ int sum = 0 ; if(a[0]==a[1]&&a[0]==a[2]&&a[0]==a[3]) sum++ ; if(a[4]==a[5]&&a[4]==a[10]&&a[4]==a[11]) sum++ ; if(a[6]==a[7]&&a[6]==a[12]&&a[6]==a[13]) sum++ ; if(a[8]==a[9]&&a[8]==a[14]&&a[8]==a[15]) sum++ ; if(a[16]==a[17]&&a[16]==a[18]&&a[16]==a[19]) sum++ ; if(a[20]==a[21]&&a[20]==a[22]&&a[20]==a[23]) sum++ ; return sum ; } Cube R_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[1] = a[7] ; o.a[3] = a[13] ; o.a[7] = a[17] ; o.a[13] = a[19] ; o.a[17] = a[21] ; o.a[19] = a[23] ; o.a[21] = a[1] ; o.a[23] = a[3] ; o.a[8] = a[14] ; o.a[9] = a[8] ; o.a[14] = a[15] ; o.a[15] = a[9] ; return o ; } Cube R_count_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[7]= a[1]; o.a[13]= a[3]; o.a[17]= a[7]; o.a[19]= a[13] ; o.a[21]= a[17] ; o.a[23] =a[19]; o.a[1] =a[21]; o.a[3] =a[23]; o.a[14] =a[8]; o.a[8] =a[9]; o.a[15] =a[14]; o.a[9] =a[15]; return o ; } Cube U_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[5] = a[16] ; o.a[11] = a[17] ; o.a[16] = a[14] ; o.a[17] = a[8] ; o.a[14] = a[3] ; o.a[8] = a[2] ; o.a[3] = a[5] ; o.a[2] = a[11] ; o.a[6] = a[12] ; o.a[7] = a[6] ; o.a[13] = a[7] ; o.a[12] = a[13] ; return o ; } Cube U_count_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[16]= a[5]; o.a[17]= a[11]; o.a[14]= a[16]; o.a[8]= a[17] ; o.a[3]= a[14] ; o.a[2] =a[8]; o.a[5] =a[3]; o.a[11] =a[2]; o.a[12] =a[6]; o.a[6] =a[7]; o.a[7] =a[13]; o.a[13] =a[12]; return o ; } Cube F_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[4] = a[6] ; o.a[5] = a[7] ; o.a[6] = a[8] ; o.a[7] = a[9] ; o.a[8] = a[23] ; o.a[9] = a[22] ; o.a[23] = a[4] ; o.a[22] = a[5] ; o.a[0] = a[2] ; o.a[1] = a[0] ; o.a[2] = a[3] ; o.a[3] = a[1] ; return o ; } Cube F_count_colock(){ Cube o ; for(int i = 0 ;i < 24 ;i++) o.a[i] = a[i] ; o.a[6]= a[4]; o.a[7]= a[5]; o.a[8]= a[6]; o.a[9]= a[7] ; o.a[23]= a[8] ; o.a[22] =a[9]; o.a[4] =a[23]; o.a[5] =a[22]; o.a[2] =a[0]; o.a[0] =a[1]; o.a[3] =a[2]; o.a[1] =a[3]; return o ; } }; int N ; int ans ; void dfs(Cube cb ,int step){ Cube o ; if(step>N) return ; if(ans == 6) return ; o = cb.F_colock() ; ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; o = cb.F_count_colock() ; ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; o = cb.R_colock() ; ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; o = cb.R_count_colock() ; ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; o = cb.U_colock(); ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; o = cb.U_count_colock() ; ans = Max(ans,o.complete_face()) ; dfs(o,step+1) ; } int main(){ Cube now ; while(scanf("%d",&N)!=EOF){ for(int i = 0 ;i < 24 ;i++) scanf("%d",&now.a[i]) ; ans = now.complete_face() ; dfs(now,1) ; printf("%d\n",ans) ; } return 0 ; }