<译> 简单的代数数据类型

原文见 http://bartoszmilewski.com/20...

-> 上一篇:『积与余积

我们已经了解了两种类型组合方式:积与余积。编程中,仅通过这两种类型就可以构造出大部分数据结构。正是因为这一点,保证了数据结构的许多性质都是可复合的。例如,如果知道如何比较两种基本类型的值是否相等,并且知道如何将这种比较方法推广到积与余积类型,那么你就能够自动派生出支持相等运算的复合类型。在 Haskell 中,大部分复合类型能够自动继承相等比较、大小比较以及与字符串的相互转换等运算能力。

现在,我们先近距离的看看编程中的积类型与和类型。

积类型

编程语言中,对于两个类型的积,官方实现是序对(Pair)。在 Haskell 中,序对是基本的类型构造子;在 C++ 中,积表现为标准库中所定义的相对复杂一些的模板。

序对

序对并非严格可交换的:不能用序对 (Bool, Int) 去替换序对 (Int, Bool),即使它们承载相同的信息。然而,在同构意义上,序对是可交换的——swap 可给出这种同构关系:

swap :: (a, b) -> (b, a)
swqp (x, y) = (y, x)

你可以将这两个序对看作是采用了不同的格式存储了相同的数据,这有点像大根堆 vs 小根堆。

可以通过序对的嵌套,将任意个数的类型组合到积内,但是更简单的方法是利用:嵌套的序对与元组(Tuple)相等。因为嵌套的序对与元组是同构的。如果你想将 a, b, 与 c 这三种类型组合为积,有两种办法可以做到:

((a, b), c)

(a, (b, c))

这两种类型是不同的——你不能将其中一种类型传递给一个需要另一种类型的函数——但是它们所包含的元素是壹壹对应的。有一个函数可以将其中一种类型映射为另一种:

alpha :: ((a, b), c) -> (a, (b, c))
alpha ((x, y), z) = (x, (y, z))

并且,这个函数是可逆的:

alpha_inv :: (a, (b, c)) -> ((a, b), c)
alpha_inv  (x, (y, z)) = ((x, y), z)

因此,这是一种同构,即用了不同的方式封装了相同的数据。

可以将积类型的构造解释为作用于类型的一种二元运算。从这个角度来看,上述的同构关系看上去有些像幺半群中的结合律:

(a * b) * c = a * (b * c)

只不过,在幺半群的情况中,这两种复合为积的方法是等价的,而上述积类型的构造方法只是在『同构条件下』等价。

如果是在同构的条件下,不再坚持严格的相等性的话,我们可以走的更远,而且还能揭示 unit 类型 () 类似于数字乘法中的 1。类型 a 的值与一个 unit 值所构成的序对,除了 a 值之外,什么也没有包含。因此,这种类型

(a, ())

a 是同构的。如果不相信,我们可以为它们构造出同构关系:

rho :: (a, ()) -> a
rho (x, ()) = x

rho_inv :: a -> (a, ())
rho_inv x = (x, ())

如果用形式化语言描述这些现象,可以说 Set(集合的范畴)是一个幺半群范畴,亦即这种范畴也是一个幺半群,这意味着你可以让对象相乘(在此,就是笛卡尔积)。以后我会再多讲讲幺半群范畴,并给出完整的定义。

在 Haskell 中有一种更通用的办法来定义积类型——特别是,过一会就可以看到,这种积类型可由加类型复合而成。这种积类型可以用带有多个参数的构造子来定义,例如可将序对定义为:

data Pair a b = P a b

在此,Pair a b 是由 ab 参数化的类型的名字;p 是数据构造子的名字。要定义一个序对类型,只需向 Pair 类型构造子传递两个类型。要构造一个序对类型的值,只需向数据构造子 P 传递两个合适类型的值。例如,定义一个序对类型的值 stmt,其对应的序对类型为 StringBool 的积:

stmt :: Pair String Bool
stmt = P "This stateme
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值