安徽省省级A类数学建模SPSS实操教程

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《2023安徽省省级A类数学建模spss教程》为数学建模竞赛参赛者提供了专业指导,旨在教授如何使用SPSS软件进行数据分析和模型构建。教程涵盖了SPSS界面、数据预处理、描述性统计分析、多种统计模型构建以及模型验证等方面。还包括数据导出和报告撰写,帮助参赛者全面掌握SPSS应用,提升建模效率与质量。
2023安徽省省级A类数学建模spss教程

1. SPSS基本操作指导

1.1 SPSS界面介绍

SPSS(Statistical Package for the Social Sciences)是一款功能强大的统计分析软件,其用户友好的界面使得初学者也能快速上手。主界面由以下几个部分组成:

  • 菜单栏(Menu Bar) :提供各种命令和功能选项,包括数据处理、分析、图形和工具等。
  • 工具栏(Toolbar) :包含常用功能的快捷按钮,如打开文件、保存文件、数据查看等。
  • 数据视图(Data View) :在此视图中可以直接编辑和查看数据。
  • 变量视图(Variable View) :用于定义数据集中的变量属性,包括名称、类型、标签、值标签、缺失值、列宽、对齐方式以及测量层次。

1.2 数据输入与导入

在SPSS中,数据可以手工输入,也可以从其他软件导入。手工输入数据时,用户需在数据视图中直接键入。导入数据则更为常见,SPSS支持导入多种格式的数据,如:

  • Excel文件(.xls或.xlsx) :通过 文件 > 打开 > 数据 > 选择 Excel 文件导入。
  • 文本文件(.txt或.csv) :通过 文件 > 打开 > 数据 > 选择 文本数据 导入。
  • 数据库文件(如MySQL, Access等) :利用SPSS提供的数据库连接向导导入。

导入数据前,建议在源数据软件中对数据进行预处理,如检查数据格式、处理缺失值等,以保证数据的准确性和可用性。

1.3 数据集的初步探索

一旦数据导入SPSS,接下来是进行数据集的初步探索,这是数据分析的第一步。可以使用以下方法:

  • 频率分布表(Frequencies) :提供关于数据分布情况的快速概览。
  • 描述性统计(Descriptive Statistics) :计算均值、中位数、标准差等统计量。
  • 交叉表(Crosstabs) :对于分类变量,可以生成交叉表来分析变量之间的关系。

通过这些基本操作,用户可以对数据集有一个整体的了解,为后续深入分析打下基础。

flowchart LR
    A[SPSS界面介绍] --> B[数据输入与导入]
    B --> C[数据集的初步探索]

以上流程图展示了从认识SPSS界面开始,到数据输入导入,再到数据集的初步探索的基本操作流程。熟练掌握这些操作,将有助于你高效地进行数据分析。

2. 数据预处理技术

数据预处理是数据分析和建模的重要步骤,关系到分析结果的准确性和可靠性。数据预处理一般包括数据清洗、数据转换和数据整合三个阶段。我们将在本章节探讨这些关键步骤,深入理解在数据预处理过程中可能遇到的挑战和解决方案。

2.1 数据清洗

数据清洗是去除数据集中无关、错误、不一致和不完整的数据的过程,目的是保证数据集的质量。

2.1.1 缺失值处理

缺失值是数据集中常见的问题,处理缺失值的方法有多种,如删除含有缺失值的记录、用均值/中位数/众数填充、或使用模型预测缺失值。

代码示例 :使用Python的pandas库处理缺失值

import pandas as pd

# 读取数据
data = pd.read_csv('data.csv')

# 查看数据信息
print(data.info())

# 删除含有缺失值的记录
data_cleaned = data.dropna()

# 使用均值填充缺失值
data_filled = data.fillna(data.mean())

在上述代码中, dropna() 方法用于删除含有缺失值的记录,而 fillna() 方法则用于填充缺失值。需要根据数据集的具体情况选择合适的处理方法。对于连续数据,通常采用均值填充,而对于离散数据,则可能更倾向使用众数填充。

2.1.2 异常值检测与处理

异常值是指那些不符合数据集中大多数数据行为或模式的数据点。检测异常值常用的方法包括箱型图、Z-Score(标准分数)和IQR(四分位数间距)方法。

代码示例 :使用Python的scipy库检测异常值

from scipy import stats
import numpy as np

# 假设data中有一个名为'value'的列
data['Z_Scores'] = np.abs(stats.zscore(data['value']))
outliers = data[data['Z_Scores'] > 3]

print(outliers)

上述代码使用了Z-Score方法,Z-Score大于3的数据点通常被认为是异常值。异常值的处理可以通过删除这些记录,或替换为均值、中位数等进行处理。

2.2 数据转换

数据转换的目的是将数据转换为更适合分析和建模的格式。

2.2.1 数据标准化

数据标准化是指将数据按比例缩放,使之落入一个小的特定区间。常见的数据标准化方法包括最小-最大标准化和Z-Score标准化。

代码示例 :使用Python的sklearn库进行数据标准化

from sklearn.preprocessing import StandardScaler

# 假设data是待标准化的DataFrame
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)

# 转换为DataFrame格式
data_scaled = pd.DataFrame(data_scaled, columns=data.columns)

在这个示例中, StandardScaler() 方法应用了Z-Score标准化,将数据标准化至均值为0、标准差为1的分布。标准化是机器学习算法中常见的数据预处理步骤。

2.2.2 数据编码与重编码

在处理分类数据时,我们经常使用编码技术,将非数值型数据转换为数值型数据。常见的编码方法有独热编码(One-Hot Encoding)和标签编码(Label Encoding)。

代码示例 :使用Python的pandas库进行独热编码

# 假设data中有一个名为'category'的列
data_encoded = pd.get_dummies(data, columns=['category'])

get_dummies() 方法能够自动将分类数据转换为独热编码。独热编码适用于类别之间没有顺序关系的情况。

2.3 数据整合

数据整合涉及合并多个数据集以及进行跨数据库分析,通常包括如下操作。

2.3.1 合并数据集

合并数据集可以按照不同的键值将数据集组合在一起。

代码示例 :使用Python的pandas库合并数据集

# 假设有两个DataFrame:df1和df2
df_combined = pd.merge(df1, df2, on='common_column')

merge() 函数按照 ‘common_column’ 将df1和df2合并。合并类型(如内连接、外连接)可通过参数指定。

2.3.2 跨数据库分析

跨数据库分析需要从多个数据源抽取数据,并进行关联分析。这通常涉及到连接操作和可能的转换。

代码示例 :使用Python的pandas和sqlalchemy库进行跨数据库分析

from sqlalchemy import create_engine

# 创建数据库引擎
engine = create_engine('sqlite:///database.db')

# 从数据库读取数据
df = pd.read_sql_query("SELECT * FROM table_name", engine)

在上述示例中,通过 create_engine() 函数连接到SQLite数据库,并使用 read_sql_query() 从表 table_name 中读取数据。

通过上述步骤,可以确保数据的完整性和质量,为后续的分析和建模工作打下坚实的基础。

3. 描述性统计分析

描述性统计分析是数据科学的基础,通过统计量的计算和数据分布的探索,帮助我们理解数据集的基本特征。本章将详细介绍如何使用SPSS进行描述性统计分析,包括计算常见统计量和探索数据分布的方法。

3.1 常见统计量计算

描述性统计分析首先需要计算一些关键的统计量,这些统计量能够帮助我们从宏观上把握数据集的特点。以下我们将重点讨论中心趋势度量和离散程度度量。

3.1.1 中心趋势度量

中心趋势度量指的是统计量的集中趋势,常见的有平均数、中位数和众数。

  • 平均数 :所有数据值的总和除以数据的数量。
  • 中位数 :将数据集从小到大排列后位于中间位置的值。
  • 众数 :数据集中出现次数最多的值。

在SPSS中,可以使用以下步骤计算这些中心趋势度量:

  1. 打开SPSS,载入数据集。
  2. 点击顶部菜单中的 分析 -> 描述统计 -> 描述
  3. 在弹出的对话框中选择所需的变量,并将它们移动到右侧的变量框中。
  4. 点击 选项 按钮,在其中勾选平均值、中位数、众数等选项。
  5. 点击 继续 ,然后 确定 执行操作。
* 示例代码块计算平均值、中位数和众数。
DESCRIPTIVES VARIABLES=salary
  /STATISTICS=MEAN, MEDIAN, MODE.

执行上述操作后,SPSS会输出一个表格,其中包含了所选变量的平均值、中位数和众数等统计量。

3.1.2 离散程度度量

离散程度度量用于描述数据分布的广泛性或散布程度,常见的有标准差和方差。

  • 标准差 :数据值与其平均数差的平方的平均值的平方根。
  • 方差 :数据值与其平均数差的平方的平均值。

在SPSS中计算这些离散程度度量的步骤类似,通过 分析 -> 描述统计 -> 描述 进入,然后在 选项 中选择标准差或方差。

* 示例代码块计算标准差和方差。
DESCRIPTIVES VARIABLES=salary
  /STATISTICS=STDDEV, VARIANCE.

输出的表格将包括所选变量的标准差和方差,为分析数据的离散程度提供参考。

3.2 数据分布探索

在掌握了数据集的中心趋势和离散程度后,我们需要进一步探索数据分布的形状,以便更好地理解数据的潜在规律。

3.2.1 频数分布表与直方图

频数分布表和直方图可以帮助我们直观地观察数据的分布状态。

  • 频数分布表 :列出数据值及其对应的频数(数据值出现的次数)。
  • 直方图 :通过条形图的方式直观显示数据分布。

使用SPSS生成频数分布表和直方图的步骤如下:

  1. 在SPSS中,选择 分析 -> 描述统计 -> 频数
  2. 将所需变量拖入 变量 框中。
  3. 点击 图表 按钮,选择直方图,然后点击 继续
  4. 点击 确定 执行。
* 示例代码块创建频数分布表和直方图。
FREQUENCIES VARIABLES=salary
  /FORMAT=VALIDPERCENT
  /HISTOGRAM=MONTHLY
  /STATISTICS=MEAN, STDDEV, MIN, MAX
  /ORDER=ANALYSIS.

SPSS会生成频数分布表和直方图,直方图将直观显示数据的分布情况。

3.2.2 正态性检验与箱型图分析

正态性检验和箱型图分析是探索数据分布的更高级方法,有助于我们判断数据是否符合正态分布。

  • 正态性检验 :通过统计检验来评估数据是否来自正态分布。
  • 箱型图 :通过图示显示数据的五数概括(最小值、第一四分位数、中位数、第三四分位数和最大值)。

在SPSS中进行正态性检验和生成箱型图的步骤:

  1. 选择 分析 -> 描述统计 -> 探索
  2. 将所需变量拖入 因变量列表 中。
  3. 图表 选项中勾选箱型图。
  4. 点击 确定 执行操作。
* 示例代码块进行正态性检验和创建箱型图。
EXAMINE VARIABLES=salary
  /PLOT=BOXPLOT
  /STATISTICS=DESCRIPTIVES
  /CINTERVAL=95
  /MISSING=LISTWISE
  /NOTOTAL.

SPSS会生成箱型图,并对数据进行正态性检验,帮助我们了解数据分布特征。

4. 统计模型构建

4.1 线性回归分析

4.1.1 模型设定与假设检验

在构建线性回归模型之前,我们首先要设定模型的基本形式。通常,一个基本的线性回归模型可以表示为:

[ Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \ldots + \beta_nX_n + \epsilon ]

其中,(Y) 是因变量,(X_1, X_2, \ldots, X_n) 是自变量,(\beta_0, \beta_1, \ldots, \beta_n) 是模型参数,而 (\epsilon) 是误差项。

在SPSS中构建线性回归模型的基本步骤包括:

  1. 数据准备:确保所有的变量都已经被正确定义,并且已经进行了必要的数据清洗和转换。
  2. 选择变量:将因变量和自变量正确地选择到模型中。
  3. 模型估计:通过最小二乘法进行参数估计。
  4. 假设检验:对模型的系数进行t检验,评估每个自变量对因变量的影响是否显著。
  5. 模型诊断:检查残差的分布,确保误差项 (\epsilon) 的独立同分布假设。
* 线性回归分析示例代码
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT y
  /METHOD=ENTER x1 x2 x3.

以上代码块展示了一个简单的线性回归分析操作,其中 y 代表因变量,而 x1 x2 x3 为自变量。在模型估计后,输出结果将包括每个自变量的系数估计值,以及相应的t统计量和p值。

在进行假设检验时,我们需要关注p值。通常,如果一个自变量的p值小于0.05(或根据研究需要设定的其他显著性水平),我们则认为该变量对因变量有显著影响。

4.1.2 模型优化与系数解读

在完成了初步的模型构建后,我们可能需要对模型进行优化,以提高其预测能力和解释性。模型优化可以包括以下步骤:

  1. 变量选择:考虑使用逐步回归(Stepwise Regression)方法来选择对因变量影响最大的变量。
  2. 模型简化:检查是否有共线性问题,并考虑剔除共线性高的变量。
  3. 异常值处理:识别并处理可能影响模型稳定性的异常值。
* 逐步回归分析示例代码
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT y
  /METHOD=STEPWISE x1 x2 x3.

通过逐步回归,SPSS会自动进行变量的引入和剔除,直到满足既定的标准。模型优化的结果将更加简洁,并且模型的解释性将得到提升。

在解读模型系数时,重点在于理解每个自变量对因变量的影响。正系数表示正相关,负系数表示负相关。系数的大小表示了自变量每单位变化对因变量的平均变化量。在解释模型时,还要考虑到系数的统计显著性,即p值,以及模型的拟合优度,如R平方值。

4.2 逻辑回归分析

4.2.1 二元逻辑回归的应用

在许多研究和业务场景中,我们关注的因变量是二元的,即只有两个可能的结果。逻辑回归特别适用于这类问题的建模。二元逻辑回归模型的形式如下:

[ \log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1X_1 + \ldots + \beta_nX_n ]

其中,(p) 是因变量等于1的概率,而 (1-p) 则是因变量等于0的概率。

* 二元逻辑回归分析示例代码
LOGISTIC REGRESSION VARIABLES y
  /METHOD=ENTER x1 x2 x3
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(0.5).

在这段SPSS代码中, y 代表二元因变量,而 x1 x2 x3 代表自变量。模型使用的是进入法(ENTER),也就是同时将所有变量引入到模型中。 ITERATE 指定了最大迭代次数,而 CUT 指定了决定分类的临界值。

在逻辑回归模型的结果解读中,重点在于评估每个自变量的回归系数。回归系数的指数(Exp(B))表示为每个自变量的单位变化对因变量发生概率的倍数影响。如果Exp(B)大于1,表示正相关;如果小于1,则表示负相关。

4.2.2 多项式逻辑回归的拓展

在实际应用中,我们可能会遇到具有两个或两个以上分类结果的因变量,此时可以使用多项逻辑回归(Multinomial Logistic Regression)。该模型可以处理多于两个类别的分类问题。

* 多项逻辑回归分析示例代码
LOGISTIC REGRESSION VARIABLES y WITH x1 x2 x3
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20) 
  /METHOD=ENTER.

在这个代码块中, y 是一个多类别变量, x1 x2 x3 是自变量。由于模型的复杂性,多项逻辑回归通常需要更多的迭代次数来确保收敛。

在模型的解读上,我们需要关注每个类别的参照类(基线类别),然后比较其他类别与参照类的关系。系数的解释方式与二元逻辑回归类似,但是需要对于每一对类别进行解释。

[接上文内容,下文需要继续详细展开各项内容的深度解析和参数解读,保证连贯性和丰富性]

5. 模型验证方法

5.1 拟合度检验

5.1.1 R平方与调整R平方

在统计模型中,R平方(R²)衡量的是模型对数据的拟合程度,它表示模型所能解释的变异占总变异的比例。R²的取值范围从0到1,值越接近1,说明模型对数据的拟合越好。然而,当引入更多的解释变量时,即使这些变量对响应变量没有实际的预测能力,R²也往往会增加。为了解决这个问题,我们引入了调整R平方(Adjusted R²),它对R²进行了惩罚,以反映额外变量对模型解释能力的净影响。

调整R平方的计算公式如下:

[ \bar{R}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k - 1} ]

其中,( n ) 是样本数量,( k ) 是解释变量的数量。

代码示例:

import statsmodels.api as sm

# 假设X是解释变量矩阵,y是响应变量向量
X = sm.add_constant(X)  # 添加常数项
model = sm.OLS(y, X).fit()
r_squared = model.rsquared
adjusted_r_squared = model.rsquared_adj

print("R-squared:", r_squared)
print("Adjusted R-squared:", adjusted_r_squared)

5.1.2 拟合优度检验

拟合优度检验(Goodness-of-Fit Test)的目的是检验一个观测频数分布与一个理论分布是否存在显著性差异。在回归分析中,卡方拟合优度检验可以用来检验回归模型与数据的拟合程度。检验的基本思想是:如果实际频数与理论频数之间没有差异,那么卡方值应该接近于0;反之,如果差异越大,卡方值越大,模型与数据拟合就越差。

在SPSS中进行卡方拟合优度检验的基本步骤如下:

  1. 执行回归分析。
  2. 查看“模型拟合度”表中的卡方统计量。
  3. 对卡方统计量进行显著性检验。

具体操作步骤:

  • 在SPSS中选择“分析” -> “回归” -> “线性”。
  • 将因变量和自变量放入对应框中,然后点击“统计量”。
  • 在“模型拟合度”中勾选“卡方”。
  • 点击“确定”运行分析,并查看输出结果。

5.2 残差分析

5.2.1 残差的图示分析

残差分析是评估回归模型拟合好坏的一种重要手段。通过分析残差图,可以直观地查看残差的分布是否符合正态性、同方差性和独立性等假设条件。残差图一般会绘制在散点图上,其中横轴为拟合值,纵轴为残差值。理想情况下,残差应该围绕零值随机分布,没有明显的趋势。

代码示例:

# 使用R语言进行残差图绘制
plot(model$fitted.values, model$residuals)
abline(h=0, col="red")

5.2.2 残差的统计检验

残差的统计检验主要包括正态性检验和异方差性检验。正态性检验常用的统计方法有Shapiro-Wilk检验和Kolmogorov-Smirnov检验,这些检验可以帮助我们判断残差是否符合正态分布。异方差性检验则包括White检验和Breusch-Pagan检验等,它们用于检验残差的方差是否随解释变量的变化而变化。

正态性检验代码示例:

# Shapiro-Wilk检验
shapiro.test(model$residuals)

# Kolmogorov-Smirnov检验
ks.test(model$residuals, "pnorm", mean(model$residuals), sd(model$residuals))

异方差性检验代码示例:

# Breusch-Pagan检验
library(lmtest)
bptest(model)

通过这些检验,我们可以确保模型的假设条件得到满足,从而保证模型预测的准确性和可靠性。

6. 统计图表绘制与报告撰写

在数据分析的最后阶段,将数据的洞察和分析结果以图表和报告的形式清晰、有效地展示出来是非常关键的。下面将详细介绍统计图表绘制的技巧和撰写数据报告的指南。

6.1 统计图表绘制技巧

6.1.1 不同类型的图表选择

选择合适的图表类型是传达数据信息的第一步。常见的图表类型及其适用场景如下:

  • 柱状图 :适用于展示不同类别数据的数量对比。
  • 饼图 :用于显示各部分占整体的比例。
  • 折线图 :适合展示数据随时间的变化趋势。
  • 散点图 :用于探索变量之间的关系。
  • 箱型图 :展示数据分布的中位数、四分位数等统计量。

下面的代码块演示如何使用Python的matplotlib库绘制一个简单的柱状图:

import matplotlib.pyplot as plt

# 数据准备
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 30]

# 绘制柱状图
plt.figure(figsize=(8, 5))
plt.bar(categories, values, color='skyblue')
plt.title('Category vs Values')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.show()

6.1.2 图表的编辑与美化

图表的编辑与美化能够提升数据的可读性和视觉吸引力。以下是一些常见的编辑和美化建议:

  • 使用合适的颜色和渐变,增强图表的层次感。
  • 添加图例、标签和标题,让图表自我解释。
  • 注意坐标轴的范围和刻度,避免误导观众。

下面的代码块继续使用matplotlib进行图表的编辑和美化:

# 继续使用之前的代码变量

# 添加图例、标签和标题
plt.bar(categories, values, color='coral', edgecolor='black')
plt.legend(['Values'])
plt.title('Category vs Values', fontsize=15)
plt.xlabel('Categories', fontsize=12)
plt.ylabel('Values', fontsize=12)
plt.xticks(categories)
plt.yticks(range(0, 35, 5))

# 显示图表
plt.show()

6.2 数据报告撰写指南

撰写数据报告需要逻辑清晰和结构合理,以确保读者能够无障碍地理解分析结果。

6.2.1 报告结构设计

一个标准的数据报告结构通常包括以下几个部分:

  • 标题 :简明扼要地介绍报告主题。
  • 摘要 :概括报告的关键发现和结论。
  • 介绍 :详细说明研究背景、目的和范围。
  • 方法 :描述数据收集和分析的方法论。
  • 结果 :展示分析结果,并使用图表辅助说明。
  • 讨论 :对结果进行解释和讨论。
  • 结论 :总结研究发现,并提供可能的建议或下一步行动。
  • 附录 :包含数据集、额外的图表或方法论细节。

6.2.2 内容撰写与格式规范

撰写报告时,需要注意以下几点:

  • 使用清晰、简洁的语言,避免行业术语或对非专业读者晦涩难懂的表述。
  • 格式上应保持一致性,例如使用相同的字体和字号、图表风格一致等。
  • 图表和文字应相互印证,确保数据的准确性和完整性。

报告的撰写不仅仅是数据的简单罗列,而是需要通过精心的设计和排版,让报告内容层次分明,逻辑清晰,易于理解。一个好的报告能够让读者快速抓住关键信息,理解分析的深度和广度。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《2023安徽省省级A类数学建模spss教程》为数学建模竞赛参赛者提供了专业指导,旨在教授如何使用SPSS软件进行数据分析和模型构建。教程涵盖了SPSS界面、数据预处理、描述性统计分析、多种统计模型构建以及模型验证等方面。还包括数据导出和报告撰写,帮助参赛者全面掌握SPSS应用,提升建模效率与质量。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

内容概要:本文详细介绍了一个基于Java与Vue的食品安全溯源与智能分析系统的设计与现,涵盖项目背景、目标意义、面临挑战及解决方案,并阐述了系统的整体架构与核心技术模块。系统通过集成物联网设备现全流程数据采集,采用分布式数据库保障大数据存储与高效访问,结合机器学习算法进行风险预测与智能预警,同时利用可视化技术呈现溯源链路与分析结果,现了食品从生产到销售全过程的透明化、智能化管理。文中还提供了关键模块的代码示例,如数据清洗、特征提取、决策树模型训练与预测、溯源接口开发等,增强了项目的可施性与参考价值。; 适合人群:具备Java开发基础、熟悉Spring Boot和Vue框架,有一定前后端开发经验的软件工程师或计算机专业学生,尤其适合从事食品安全、物联网、大数据分析等相关领域技术研发的人员; 使用场景及目标:①构建食品全链条溯源体系,提升企业对食品安全事件的快速响应能力;②现生产流程数字化管理,支持政府监管与消费者透明查询;③应用机器学习进行风险建模与智能预警,推动食品行业智能化转型; 阅读建议:建议结合文中提供的模型描述与代码示例,深入理解各模块设计逻辑,重点关注数据处理流程、算法现与前后端交互机制,可基于该项目进行二次开发或拓展应用于其他行业的溯源系统建设。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值