Two Sum(hashtable)

Given an array of integers, find two numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based.

You may assume that each input would have exactly one solution.

Input: numbers={2, 7, 11, 15}, target=9
Output: index1=1, index2=2

 

三种做法:

1.暴力O(n2),找出所有两两数之和,判断是否与target相等,若相等则结束。

2.位置记录,map。由于map的键是自动排序的,所以直接对其进行操作即可

3.参考别人,读完题首先想到的就是两层遍历法,但是显然时间复杂度太高,是O(N^2),不符合要求,于是就应该想如何降低复杂度,首先应该想将逐个比较转变为直接查找,即首先计算出 target与当前元素的差,然后在序列中寻找这个差值,这样首先就把问题简化了,而寻找的过程可以先对序列进行快排,然后二分查找,这样整体的复杂度就降低为 O(N*logN) 了;查找最快的方法是利用一个 map容器存储每个元素的索引,这样取得某个特定元素的索引只需要常数时间即可完成,这样就更快了,最多只需遍历一次序列,将元素及其索引加入map中,在遍历的过程中进行对应差值的查找,如果找到了就结束遍历,这样时间复杂度最多为 O(N)

 

方法2代码:注意重复的判断,如numbers={0,3,4,0},target=0;由于题目已假设只有一个解决方案,所以若numbers有重复,则重复的这个数,只可能和本身构成target。

class Solution {
public:
    vector<int> twoSum(vector<int> &numbers, int target) {
        int len=numbers.size();
        map<int,int> m;
        vector<int> res;
        for(int i=0;i<len;++i){
            if (!m[numbers[i]])
            {
                m[numbers[i]]=i+1;
            }else
            {
                if(numbers[i]+numbers[i]==target){
                    res.push_back(m[numbers[i]]);
                    res.push_back(i+1);
                    return res;
                }
            }
        }
        map<int,int>::iterator it_beg=m.begin();
        map<int,int>::iterator it_end=m.end();
        --it_end;

        while(it_beg!=m.end()&&it_end!=m.begin()){
            if(it_beg->first+it_end->first>target)
                --it_end;
            else if(it_beg->first+it_end->first<target)
                ++it_beg;
            else{
                res.push_back(it_beg->second);
                res.push_back(it_end->second);
                if(res[0]>res[1])
                    swap(res[0],res[1]);
                return res;
            }

        }
    }
};

 

方法三代码:

class Solution {
public:
    vector<int> twoSum(vector<int> &numbers, int target) {
        int i, sum;
        vector<int> results;
        map<int, int> hmap;
        for(i=0; i<numbers.size(); i++){
            if(!hmap.count(numbers[i]))
                hmap.insert(pair<int, int>(numbers[i], i));
            if(hmap.count(target-numbers[i])){
                int n=hmap[target-numbers[i]];
                if(n<i){//两个作用:自身等于target排除,若有重复,找出较小的即n
                    results.push_back(n+1);
                    results.push_back(i+1);
                    return results;
                }

            }
        }
        return results;
    }
};

 

转载于:https://www.cnblogs.com/fightformylife/p/4146298.html

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值