单个随机变量的函数的分布

上次看数字图像处理时,在关于图像直方图均衡处理 (page74) 时,有一个公式:

p_s(s)=p_r(r)|\frac{dr}{ds}|

开始不知道如何推导出这个公式的,后面想到概率论与数理统计上好像讲到过这个推导过程,现找到 (page51) 记录如下:


f(x)是严格单调函数,随机变量X的密度函数p_X(x),试证明对于随机变量Y=f(X),其密度函数

p_Y(y)=p_X[f^{-1}(y)]\cdot |[f^{-1}(y)]'|

这里x=f^{-1}(y)y=f(x)的反函数。

证明f(x)为严格单调增函数,则f'(x)>0. 因而其反函数x=f^{-1}(y)存在且亦为单调增函数,即[f^{-1}(y)]'>0,则

F_Y[y]=P\{Y\le y\}=P\{f(X)\le y\}=P\{X\le f^{-1}(y)\}=F_X(F^{-1}(y))

进而

p_Y(y)=p_X[f^{-1}(y)][f^{-1}(y)]'=p_X(f^{-1}(y))|[f^{-1}(y)]'|

f(x)为严格单调减函数,则f'(x)<0,此时[f^{-1}(y)]'<0,则

F_Y(y)=P\{Y\le y\}=P\{f(X)\le y\}=P\{X\ge f^{-1}(y)\}=1-F_X[f^{-1}(y)]

从而

p_Y(y)=-p_X[f^{-1}(y)][f^{-1}(y)]'=p_X[f^{-1}(y)]|[f^{-1}(y)]'|

因而证得

p_Y(y)=p_X[f^{-1}(y)]|[f^{-1}(y)]'|

因为s=T(r),所以r=T^{-1}(s),又[T^{-1}(s)]'={1}/{T(r)'}=dr/ds,所以p_s(s)=p_r(T^{-1}(s))|dr/ds|=p_r(r)|dr/ds|

转载于:https://juejin.im/post/5ac22f6951882548fe4a4ce9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值