题目大义:
给一张图,任意两点间有单向边,找出一种方案,使得每个新入队的点与队中的点距离<=2。
题解:
贪心,从最后入队点开始反向插入,每次找出最大入度的点入队。
只需证明最大入度点A与所有未入队的点距离<=2
每次加入最大入度点A,设未入队的B集与A距离为1,假设若有未入队的点C与A距离>2,则必有A->C,B->C,则有C入度>A,矛盾!
故恒有解
代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cstdlib> #include <cmath> #include <utility> #include <vector> #include <queue> #include <map> #include <set> #define max(x,y) ((x)>(y)?(x):(y)) #define min(x,y) ((x)>(y)?(y):(x)) using namespace std; struct City { int out,res; }city[505]; int n; char p; bool cmp(City x, City y) { return x.out<y.out; } int main() { while(scanf("%d",&n)!=EOF && n) { for(int i=0; i<n; i++) { city[i].res=i; city[i].out=0; } for(int i=0; i<n; i++) { getchar(); for(int j=0; j<n; j++) { scanf("%c",&p); if(p=='1') city[i].out++; } } sort(city,city+n,cmp); for(int i=n-1; i>0; i--) printf("%d ",city[i].res+1); printf("%d\n",city[0].res+1); } return 0; }