高速线性筛法求素数

 

    说到求素数。事实上在刚開始学C++的时候就已经见过诸如此类的问题,只是如今最常见的还是筛法求素数

  谈及筛法求素数,其大致思路可分为例如以下五步:

 

     (1).把2到n的自然数放入a[2]到a[n]中(所放入的数与下标号同样) ;

     (2).在数组元素中下面标为序,按顺序找到未曾找过的最小素数minp和它的位置p(即下标号);

     (3).从p+1開始,把凡是能被minp整除的各元素值从a数组中划去(筛掉),也就是把该元素标记为0;

     (4).让p=p+1,反复运行第(2) (3)步骤,知道,minp>floor(sqrt(n))为止;

     (5).打印输出a数组中留下来的数,未被筛掉的各元素值;

 

  这样的求素数的算法非常easy被理解,其时间复杂度介于O(n)~O(n*logn)是一种比較流行的方法。

可是相同的。这样的算法也存在先天性的缺陷。我们简单分析:

 

  对于一个数30。可分解为30=2*15=3*10=5*6,显然,当循环,2,3,5,6,10,15时都会筛除一次30这个数。而

当n非常大时。就会出现很多的冗余操作,这个算法能够进一步进行优化来使算法的效率提高,因此,一种名为

高速线性筛法的算法应运而生。这样的算法的智慧之处在于——对于2~n的每个数,它仅仅筛去到眼下为止它能

筛到而之后的其它数筛不到的几个合数。而把它能筛到。另有别的数也能筛到的数留个接下来的数去筛,这

样的话就能使得素数的筛选不重不漏——说起来easy做起来难。这种算法应该怎样实现呢?

 

  对于高速筛法求素数,其步骤也可分为例如以下几个阶段:

(1).开一个n+1大小的数组num[n]来存放每个元素的筛留情况(即对于num[n]的每个数与下标号同样,对于任

      意num[n]有num[n]=0,num[n]=1两种情况,假设num[n]=0则是素数,反之num[n]=1时是合数);

(2).再开一个数组prime[n]来存放筛出的素数以便最后输出结果;

(3).对于一个数k,总是进行从n*prime[0]~n*prime[j](由小到大来乘),直到if(n%prime[j]==0)成立时break掉

这是这个算法的精髓所在,所以弄清楚原因是十分必要的。!


  对于一个数c=a*b(b为c的最小质因数),当通过该算法的循环循环至c*b时,易得此时c%b==0,假设此时继续循环至b后面的一个素数d,则有:c*d=a*b*d=(a*d)*b。由于d>b,所以a*d>c。当循环从c继续查找到a*d时我们发现当a*d再次与素数b想乘时,就又对c*d进行了一次操作,出现了冗余。所以在if(n%prime[j]==0)成立时要将该层循环break掉;


  举个样例,对于一个数9。9*2=18将18标记为合数,循环继续;9*3=27将27标记为合数,此时发现9%3=0,循环退出。假设将循环继续下去会出现筛除9*5=45的情况,而45=15*3。在15时会被在筛去一次。故不可行

(4)完毕了算法中最重要的一步,最后仅仅要将存放筛出的prime[ ]数组中的素数就可以!

  这样的算法的写法也十分简单,这里仅仅给出一种与普通筛法求素数比較程序。例如以下:

#include<iostream>
#include<cstdio>
#include<ctime>
#include<cmath>
#define inf 20000005
using namespace std;
int n;
bool a[inf+1];
long num[inf+1]={1,1},prime[inf+1]={0},number=0;     //number 记录素数个数                                                     

void putongshaifa()                                  //普通筛法求素数 
{
	clock_t begin,end;                                            
	begin=clock();
	for(int i=0;i<=n;++i)
	  a[i]=true;
	a[1]=false;
	for(int i=2;i<sqrt(n);++i)
	  if(a[i])
	    for(int j=2;j<=n/i;++j)
	      a[i*j]=false;
	end=clock();
	/*for(int i=2,t=0;i<=n;++i)
	  if(a[i])
	  {
	  	cout<<i<<" ";
	  	++t;
	  	if(t%10==0) cout<<endl;
	  }
	cout<<endl;*/
	printf("普通筛法-Time used:%d ms\n",end-begin); 
	return;
}


void kuaisushaifa()                                 //高速筛法求素数 
{
	clock_t begin,end;                                             
	begin=clock();
	for(int i=2;i<=n;++i) 
	{
		if(!num[i])
		  prime[number++]=i;
		for(int j=0;j<number && i*prime[j]<=n;j++)  
        {  
            num[i*prime[j]]=1;                     //把全部合数标记为 1 
            if(!(i%prime[j]))                      // *为保证不反复筛选* 
                break;  
        }  
    }
	end=clock();
    /*for(int i=0;i<number;i++)
    {  
        if(i%10==0) printf("\n");  
        printf("%3d",prime[i]);  
    }  */
	printf("高速筛法-Time used:%d ms\n",end-begin); 
	return;
}

int main()
{
	//freopen("prime.txt","w",stdout);
	scanf("%d",&n);
	int _test=10;
	while(_test--)
	{
		putongshaifa();
		kuaisushaifa();
		cout<<endl;
	}
    return 0;   
}

 通过比較。两种算法的差异一目了然:


  由上述数据不难看出。高速线性筛法的效率基本比普通筛法求素数的效率高一倍,说明这的确是一种比較可

靠的关于求素数优化的算法~!

 

 

### 回答1: 线性筛是一种常用的求素数的方,它的思想简单且高效。下面是使用Java语言实现线性筛求素数的代码: ```java import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class LinearSieve { public static List<Integer> getPrimes(int n) { boolean[] isComposite = new boolean[n + 1]; List<Integer> primes = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (!isComposite[i]) { primes.add(i); } for (int j = 0; j < primes.size() && i * primes.get(j) <= n; j++) { isComposite[i * primes.get(j)] = true; if (i % primes.get(j) == 0) { break; } } } return primes; } public static void main(String[] args) { int n = 100; List<Integer> primes = getPrimes(n); System.out.println("从 2 到 " + n + " 的素数为:"); for (int prime : primes) { System.out.print(prime + " "); } } } ``` 以上代码中,我们使用了一个布尔数组`isComposite`来标记是否为合数。初始时,将所有数都标记为非合数。然后从2开始,遍历到n,如果某个数i是合数,则跳过;如果是素数,则将其加入到素数列表中,并标记它的倍数为合数。遍历结束后,我们得到了从2到n的所有素数。 在main函数中,我们设置n为100,调用`getPrimes`函数获取从2到100的素数,并打印出来。 运行结果为:从 2 到 100 的素数为:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97。 ### 回答2: 线性筛是一种高效地筛选出一定范围内的素数的算。下面是用Java实现线性筛求素数的代码: ```java import java.util.*; public class LinearSieve { public static List<Integer> sieve(int n) { boolean[] isPrime = new boolean[n + 1]; Arrays.fill(isPrime, true); // 将所有数初始化为素数 List<Integer> primes = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (isPrime[i]) { primes.add(i); // 将素数加入结果列表 } for (int j = 0; j < primes.size() && i * primes.get(j) <= n; ++j) { isPrime[i * primes.get(j)] = false; // 将当前素数倍数标记为非素数 if (i % primes.get(j) == 0) { break; // 若当前数为素数倍数,跳出内层循环 } } } return primes; } public static void main(String[] args) { int n = 100; // 范围上限 List<Integer> primes = sieve(n); System.out.println("范围[2, " + n + "]内的素数有:"); for (int prime : primes) { System.out.print(prime + " "); } } } ``` 通过线性筛,我们首先将所有数初始化为素数,然后从2开始,将每个素数的倍数标记为非素数,直到筛选结束。最后,将筛选出的素数存入结果列表中。在上述代码中,我们以100为例,调用`sieve`方求解范围内的素数,并输出结果。 当我们运行上述代码时,将会得到范围[2, 100]内的素数列表: ``` 范围[2, 100]内的素数有: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ``` 以上就是使用Java实现线性筛求素数的代码及结果。 ### 回答3: 线性筛是一种用于求解素数的算,可以高效地找出某一个范围内的所有素数。下面是使用Java语言实现线性筛求素数的代码: ```java import java.util.ArrayList; import java.util.List; public class PrimeNumbers { public static List<Integer> getPrimeNumbers(int n) { List<Integer> primeNumbers = new ArrayList<>(); boolean[] isComposite = new boolean[n + 1]; for (int i = 2; i <= n; i++) { if (!isComposite[i]) { primeNumbers.add(i); } for (int j = 0; j < primeNumbers.size() && i * primeNumbers.get(j) <= n; j++) { isComposite[i * primeNumbers.get(j)] = true; if (i % primeNumbers.get(j) == 0) { break; } } } return primeNumbers; } public static void main(String[] args) { int n = 100; List<Integer> primeNumbers = getPrimeNumbers(n); System.out.println("在[2, " + n + "]范围内的素数有:"); for (int number : primeNumbers) { System.out.println(number); } } } ``` 这段代码使用了一个布尔数组isComposite来记录某个数是否为合数(非素数),初始时假设所有数都是质数,然后从2开始遍历到n,如果某个数i没有被标记为合数,就将其添加到素数列表中,并将i与已有的质数依次相乘,将其标记为合数。 运行以上代码,可以求解出2到100之间的所有素数。输出结果如下: ``` 在[2, 100]范围内的素数有: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ``` 通过线性筛,我们可以高效地找到某个范围内的素数,而不需要遍历所有的数进行判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值