全同态加密属于密码学领域。由于全同态加密支持无需解密,就能够对密文进行任意计算,因此可以立竿见影的解决数据隐私安全问题,有很大的应用需求。例如,在云环境下,用户加密数据后存储在云端,由于数据加密使得云端无法获得数据的内容,从而保证了数据的隐私。此外,由于是全同态加密,云端可以对密文数据进行任意计算。总而言之,全同态加密不但通过加密保护了数据,而且没有丧失计算性。
这么好的性质到哪里找呀!?
全同态加密的概念早在1978年就提出,然后一找就是30多年过去了。当然这30多年也没闲着,30年间人们提出的方案随后就被证明是不安全的。
当然在这30年间,人们也退而求其次,能做一次加法和一次乘法的也可以,例如c1c2+c3c4,即一个二次多项式。这样的方案称为BGN方案。
当然再退而求其次,就是只能做加法,或者只能做乘法,这种方案称为单同态。例如,RSA就是乘法同态,Paillier就是加法同态。这些方案在有些地方大放异彩,尽管只能做一种同态计算。
直到2009年,Gentry,一个斯坦福大学的博士生,基于理想格提出一个全同态加密方案。Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
世界哗然。各大报纸头条,密码学界的突破(Breakthrough),计算机界的突破。英文中Breakthrough可不是随便用的。
最为凑巧的是,09年左右恰好是云计算概念火热的时候。而所有介绍全同态加密的文章开头都会来一句,全同态加密用在云计算中可以保护数据隐私安全。谁催化了谁,真的不知道。
Gentry的全同态加密方案是基于理想格构造的。理想格为何物?通俗的说就是一种困难问题,就像大整数难题一样。
说到这里,不得不说两句格密码。很多人只知道RSA,ECC,但是提起格密码一脸的茫然与恐惧,觉得格密码一定是一个很难理解的问题。事实上,恰好相反,所谓的格(Lattice)就是整系数基的线性组合构成的点,通俗地说就是一个空间中的一些离散有规律的点。既然是离散的点,那么点之间一定有距离,距离产生美,从而产生了一些困难问题,例如:最短向量问题(SVP)。
如果是一个二维平面,那么寻找在格上寻找最短向量问题是简单的,但是当维数变大的时候,例如200多维,寻找格上的最短向量问题就变的异常困难,称之为格上标准困难问题,是一个指数级的困难问题。你可以想象一下,当你在迷宫里时(现实世界是3维的),找出口还不算很困难,但是当在一个200多维的迷宫里时,困难程度立刻指数级上升。
最令人感兴趣的是,格上标准困难问题至今没有量子算法可以破解或者撼动它,因此格上标准困难问题被认为是抗量子的。
格上的加密方案最大特征:是一个含有噪音的方案。加密时往里添加噪音,主要是为了进一步提高安全性。然而恰好是这个噪音,导致加密的形式与解密形式比较简单。这种特性为构造全同态加密埋下了伏笔。
文章首发自 https://www.8btc.com/article/285042