两个子群的并仍然是子群的充要条件

本文探讨了两个子群$A$和$B$在群$G$中的并集$AigcupB$成为$G$的子群的充分必要条件。证明了此条件下必须有$AsubseteqB$或$BsubseteqA$。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设$A,B$是$G$的 子群 .则$A\bigcup B$是$G$的子群的充要条件是$A\subseteq B$或$B\subseteq A$.

证明:$\Leftarrow$:这是显然的.


$\Rightarrow$:假若$\exists b\in B$,使得$b\not\in A$,现在我要证明$A\subseteq B$.否则若存在$a\in A,a\not\in B$.则可得$ab\not\in A\bigcup B$(为什么?提示:根据群给我的直观印象 ).这与$A\bigcup B$是子群矛盾.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/08/18/3828301.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值