(算法)格雷码

题目:

The gray code is a binary numeral system where two successive values differ in only one bit.

Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.

For example, given n = 2, return [0,1,3,2]. Its gray code sequence is:

00 - 0
01 - 1
11 - 3
10 - 2

Note:
For a given n, a gray code sequence is not uniquely defined.

For example, [0,2,3,1] is also a valid gray code sequence according to the above definition.

For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.

n=3时,GrayCode是:

 

000
001
011
010
110
111
101
100

思路:

n位的格雷码可以从n-1位的格雷码得到,

n位的格雷码组成:

1、n-1位的格雷码

2、n-1位的格雷码的逆序+(1<<(n-1))

如下图:

代码:

#include<iostream>
#include<vector>

using namespace std;

// Non_Recursive
vector<int> GrayCode_1(int n){
    vector<int> result;
    result.push_back(0);

    for(int i=0;i<n;i++){
        int len=result.size();
        int c=1<<i;
        for(int j=len-1;j>=0;j--)
            result.push_back(result[j]+c);
    }

    return result;
}

// Recursive
void GrayCode_2(vector<int> &result,int n){
    if(n==0){
        result.push_back(0);
        return;
    }

    GrayCode_2(result,n-1);
    int len=result.size();

    for(int i=len-1;i>=0;i--)
        result.push_back(result[i]+(1<<(n-1)));

}

int main(){
    int n=4;
    vector<int> result1;
    vector<int> result2;

    result1=GrayCode_1(n);
    GrayCode_2(result2,n);

    for(int i=0;i<result1.size();i++)
        cout<<result1[i]<<" ";
    cout<<endl;

    for(int i=0;i<result2.size();i++)
        cout<<result2[i]<<" ";
    cout<<endl;

    return 0;
}

 



实验二 递归算法设计与应用 一. 实验目的和要求 1. 加深对递归算法的理解,并针对具体问题设计算法; 2. 分析算法的复杂性,寻找比较高效的算法,并实现。 3. 分析格雷码问题,并设计递归算法求解之。 二. 基本原理 递归是一种重要的程序设计方法。使用递归方法有时可使算法简洁明了,易于设计。 递归指算法自己调用自己, 有直接递归与间接递归两种。 递归方法用于解决一类满足递归关系的问题。即:对原问题的求解可转化为对其性质相同的子问题的求解。 三. 该类算法设计与实现的要点 1. 递归关系(特性):产生递归的基础。 当算法中某步骤要通过解性质相同的子问题实现时,该步骤用递归调用实现。 2. 递归出口(结束条件):确定递归的层数。 当子问题的规模充分小时可直接求解时,递归结束。 3. 参数设置:参数表示了原问题及其不同的子问题。 参数表示了子问题的大小和状态,以区别原问题以及不同层次的子问题。 4. 算法功能的设定:严格规定递归算法要解决什么样的问题。 算法功能的正确设定是保证递归过程正确进行的前提。 四. 实验内容――格雷码问题 1.问题描述 对于给定的正整数n,格雷码为满足如下条件的一个编码序列: (1) 序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2) 序列中无相同的编码。 (3) 序列中位置相邻的两个编码恰有一位不同。 例如:n=2时的格雷码为:{00, 01, 11, 10}。 设计求格雷码的递归算法并实现。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1769题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由一个正整数n组成。 输出:对于每个测试例n,输出2n个长度为n的格雷码。(为方便查看,在每个格雷码内,两个位之间用一个空格隔开,如,00输出为:0 0)。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。 3. 测试数据 输入:2 4 5 输出:0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 4. 设计与实现的提示 长度为n的格雷码是由长度为n-1的格雷码变换而成的。 可以用数组或字符串来存储格雷码。注意:对于较大的正整数n,用数组存储容易引起死机。 按照定义2n个长度为n的格雷码序列是不唯一的,若在ACM平台上提交程序,要求输出的编码序列与给出的范例具有相同的规律。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值