e=1/0!+1/1!+1/2!+1/3!+...+1/n!
计算e。要求输出需要的小数位数(9位)。
题目很直观,最直观的想法可能是一个计算n!的函数,然后一个从0到n的循环,累加所有的小数。不过这样做显然会有很多冗余计算。为了避免这种情况,显然,
假设a[n]表示1/n!,e[n]表示e,则
a[n+1]=a[n]/(n+1);
e[n+1]=e[n]+a[n+1];
根据这个等式,我们可以写出解答方法。由于题目中要求小数精度,也许随着计算机位数的增长,double能够满足精度。但是在16位的TC下似乎是无法满足的,所以考虑用大数方法处理小数。即使用一个数组a[]表示小数部分。(这里假设小数具有0.********的形式),按照这个处理方法的惯例,我们规定,
a[0]表示小数的数据位数,a[i] (i>0)中存放第i位小数的数字。例如PI 3.1415926,它的小数部分可以用下面的数组表示:
{7,1,4,1,5,9,2,6,0,0,0,........};
那么这个小数就可以表示成
a[1]*10^(-1)+a[2]*10^(-2)+...+a[n]*10^(-n)
由于
a * 10^(-i) + (10*b + c) * 10^(-(i+1)) = (a+b) * 10^(-i) + c * 10 ^(-(i+1))
所以,相邻位之间以此规则进位或者退位以及规整。
根据上面的迭代式子,我们看到至少两种小数运算,一个是小数除以整数,一个是两个小数相加。在这个题目中实际上精度不高,因此对代码执行效率的要求可以降低,但是为了通用,我还是保持该算法的惯用风格。
下面,给出一个小数除以一个整数的代码,由于一个已经规整过的小数这样运算的时候,不可能出现大于10的结果,所以这时我们无需对结果进行规整处理。
一个小数除以一个整数
#define DISLEN 9 /*最多小数位数*/
#define TOTLEN 13 /*总长度,即显示小数位数+冗余的小数位数*/
/*计算一个0.--的小数除以一个整数后的小数。*/
void Devide(int a[],int n)
{
int i,temp;/*余数*/
for(i=1; i<=a[0] && i<(TOTLEN-1); i++)
{
temp=a[i]%n; /*先保存余数!!!不能先改变a[i],切记!*/
a[i]=a[i]/n;
a[i+1]+=temp*10;
if(i==a[0] && temp!=0)
a[0]=i+1;
}
/*对最后一位进行除法运算*/
a[TOTLEN-1]/=n;
}
由于结果需要四舍五入,所以实际上我给出了一些冗余位,以保持四舍五入时候的结果正确。
#define DISLEN 9 /*最多小数位数*/
#define TOTLEN 13 /*总长度,即显示小数位数+冗余的小数位数*/
/*计算一个0.--的小数除以一个整数后的小数。*/
void Devide(int a[],int n)
{
int i,temp;/*余数*/
for(i=1; i<=a[0] && i<(TOTLEN-1); i++)
{
temp=a[i]%n; /*先保存余数!!!不能先改变a[i],切记!*/
a[i]=a[i]/n;
a[i+1]+=temp*10;
if(i==a[0] && temp!=0)
a[0]=i+1;
}
/*对最后一位进行除法运算*/
a[TOTLEN-1]/=n;
}
下面是两个小数相加的运算代码,即a=a+b,结果是a被改变为两者的和,b不发生变化。在a的基础上改动,可以使我们节省空间。相对而言,大数相加减的代码是最为简单直观的。
两个小数相加
/*注意两个正小数相加,他们的最大位数只可能减少,不可能增加!*/
void Add(int a[],int b[])
{
int i;
a[0]=MAX(a[0],b[0]);
for(i=1;i<=a[0];i++)
{
a[i]+=b[i];
}
/*规整小数*/
formular(a);
}
/*加法后的规整小数*/
void formular(int a[])
{
int i;
for(i=a[0];i>1;i--)
{
a[i-1]+=a[i]/10;
a[i]=a[i]%10;
}
a[1]=a[1]%10;
/*当最后一位为0时,位数递减(缩减位数)*/
while(!a[a[0]] && a[0])
{
a[0]--;
}
}
注意,两个小数相加以后,可能产生结果在某些位大于10,因此这时需要一次规整运算。
/*注意两个正小数相加,他们的最大位数只可能减少,不可能增加!*/
void Add(int a[],int b[])
{
int i;
a[0]=MAX(a[0],b[0]);
for(i=1;i<=a[0];i++)
{
a[i]+=b[i];
}
/*规整小数*/
formular(a);
}
/*加法后的规整小数*/
void formular(int a[])
{
int i;
for(i=a[0];i>1;i--)
{
a[i-1]+=a[i]/10;
a[i]=a[i]%10;
}
a[1]=a[1]%10;
/*当最后一位为0时,位数递减(缩减位数)*/
while(!a[a[0]] && a[0])
{
a[0]--;
}
}
最后,我们还需要对数组进行一次扫描,输出四舍五入后的结果:由于我们的目的是计算e,因此整数部分是确定的“2.”。
输出四舍五入后的结果值
/*输出e的小数表示,用2.开始,e[]中是小数部分*/
void OutputE(int a[])
{
/*len表示四舍五入后的小数长度,flag表示是否进位!*/
int i,len,flag;
printf("2.");
/*对最后一位进行四舍五入!如果位数不大于DISLEN说明无需四舍五入*/
len=DISLEN+1;
if(a[len]>4)
{
flag=1;
while(a[--len]==9);
}
else
{
flag=0;
while(a[--len]==0);
}
/*打印前几个字符*/
for(i=1;i<len;i++)
printf("%d",a[i]);
/*根据是否进位,打印最后一个数字*/
if(len>0)
printf("%d",flag? (a[len]+1):a[len]);
for(i=len+1;i<=DISLEN;i++)
printf("0");
printf("\n");
}
最后我们给出迭代部分的代码,由于使用迭代式,因此下一步的计算建立在前一步的计算结果的基础上,这样就避免了冗余计算。
/*输出e的小数表示,用2.开始,e[]中是小数部分*/
void OutputE(int a[])
{
/*len表示四舍五入后的小数长度,flag表示是否进位!*/
int i,len,flag;
printf("2.");
/*对最后一位进行四舍五入!如果位数不大于DISLEN说明无需四舍五入*/
len=DISLEN+1;
if(a[len]>4)
{
flag=1;
while(a[--len]==9);
}
else
{
flag=0;
while(a[--len]==0);
}
/*打印前几个字符*/
for(i=1;i<len;i++)
printf("%d",a[i]);
/*根据是否进位,打印最后一个数字*/
if(len>0)
printf("%d",flag? (a[len]+1):a[len]);
for(i=len+1;i<=DISLEN;i++)
printf("0");
printf("\n");
}
迭代E的结果
int e[TOTLEN],a[TOTLEN];
/* e2=2.5, a2=0.5 */
e[0]=a[0]=1;
e[1]=a[1]=5;
for(j=3;j<=9;j++)
{
Devide(a,j); /*a[n+1]=a[n]/(n+1);*/
Add(e,a); /*e[n+1]=e[n]+a[n+1];*/
printf("%d ",j);
OutputE(e);
}
int e[TOTLEN],a[TOTLEN];
/* e2=2.5, a2=0.5 */
e[0]=a[0]=1;
e[1]=a[1]=5;
for(j=3;j<=9;j++)
{
Devide(a,j); /*a[n+1]=a[n]/(n+1);*/
Add(e,a); /*e[n+1]=e[n]+a[n+1];*/
printf("%d ",j);
OutputE(e);
}
当我们想要输出80位小数时,结果如下(显然可以直接运算的内部数据类型是无法达到这样精度的):
2.71828182845904523536028747135266249775724709369995957496696762772407663035354759