数学分析(Tom M.Apostol) 定理6.7

如果$f$在$[a,b]$上是有界变差函数,即对于$[a,b]$的全部[分划]都有$\sum|\Delta f_k|\leq M$,则$f$在$[a,b]$上是有界的,事实上对于$[a,b]$内的一切$x$都有
$$|f(x)|\leq |f(a)|+M$$


证明:很简单.$\forall c\in [a,b]$,我们选取一个$[a,b]$的[分割]$P=\{x_0,\cdots,x_n\}$,使得$c\in P$.不妨设$c=x_i$,其中$0\leq i\leq n$.我们知道,
$$f(c)=f(x_i)=f(a)+\sum_{t=1}^{i}\Delta f_t$$
因此
$$|f(c)|=|f(a)+\sum_{t=1}^{i}\Delta f_t|\leq |f(a)|+\sum_{t=1}^i |\Delta f_t|\leq |f(a)|+M$$

注:实际上,更强的结论是$|f(x)-f(a)|\leq M$,这是很简单的.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/02/09/3827478.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值