Mahout简介
Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序
Mahout相关资源
- Mahout主页:http://mahout.apache.org/
- Mahout 最新版本0.8下载: http://mirrors.hust.edu.cn/apache/mahout/0.8/ 使用mahout-distribution-0.8.tar.gz可试跑,源码在mahout-distribution-0.8-src.tar.gz中
- Mahout 简要安装步骤:
如无需修改源代码,只是试用试跑,请无需安装maven(网上许多教程会有这个弯路,请跳过),具体可以参考以下教程
http://www.hadoopor.com/thread-983-1-1.html
如果需要能修改源代码并重新编译打包,需要安装maven,请参考如下图文教程:http://wenku.baidu.com/view/dbd15bd276a20029bd642d55.html
- Mahout 专业教程 : Mahout in action http://yunpan.taobao.com/share/link/R56BdLH5O
注: 出版时间2012年, 对应mahout版本0.5, 是目前mahout最新的书籍读物。目前只有英文版,但是翻了一下,里面词汇基本都是计算机基础词汇,且配图和源代码,是适合阅读的。
- IBM mahout简介: http://www.ibm.com/developerworks/cn/java/j-mahout/
注:中文版, 更新是时间为09年,但是里面对于mahout阐述较全面,推荐阅读,特别是最后的书籍清单,适合深入了解
Mahout模块详解
- Mahout模块详解
Mahout目前专注于推荐(RECOMMENDATIONS)、聚类(CLUSTERING)、分类(CLASSIFICATION)三大部分,具体事例可见Mahout In Action
推荐(RECOMMENDATIONS)
推荐算法介绍
http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/index.html
Item Based Algothrim
https://cwiki.apache.org/confluence/display/MAHOUT/Itembased+Collaborative+Filtering
Collaborative Filtering using a parallel matrix factorization
https://cwiki.apache.org/confluence/display/MAHOUT/Collaborative+Filtering+with+ALS-WR
注:基于矩阵因子分解的方法,由于需要不断迭代,所以在mapreduce框架下效率会受影响
Non-distributed recommenders
https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentatio
注:mahout中也提供了推荐算法的非分布式的实现,其中有代号为”taste”的开源推荐引擎
分类(CLUSTERING)
Bayesian 贝叶斯分类
http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
注:其中同时实现了Naive Bayes和Complementary Naive
BayesRandom Forests 随机森林
https://cwiki.apache.org/confluence/display/MAHOUT/Random+Forests
注:在公司内部,GBDT(内部称treelink)有着广泛的引用,附介绍文章
http://www.searchtb.com/2010/12/an-introduction-to-treelink.html (tbsearch博客)
http://www.cnblogs.com/LeftNotEasy/archive/2011/03/07/random-forest-and-gbdt.html (介绍随机森林与GBDT的博客)
Logistic Regression(逻辑回归)
https://cwiki.apache.org/confluence/display/MAHOUT/Logistic+Regression
注:是用SGD(Stochastic Gradient Descent,随机梯度下降)的方法实现的
也可用liblinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/ (其中支持L1&L2 regularized logistic regression)
SVM(支持向量机)
目前mahout这个模块还在开发,尚未集成入发布包,如有需要,建议使用台大的libSVM包
libSVM:http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
聚类(CLASSIFICATION)
聚类方法简述
http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy3/
Canopy Clustering模块分析
http://www.cnblogs.com/vivounicorn/archive/2011/09/23/2186483.html (中文博客)
https://cwiki.apache.org/confluence/display/MAHOUT/Canopy+Clustering (英文文档)
Kmeans模块分析
http://www.cnblogs.com/vivounicorn/archive/2011/10/08/2201986.html (中文博客)
https://cwiki.apache.org/confluence/display/MAHOUT/K-Means+Clustering (英文文档)
Fuzz Kmeans
https://cwiki.apache.org/confluence/display/MAHOUT/Fuzzy+K-Means
Mean Shift Clustering
https://cwiki.apache.org/confluence/display/MAHOUT/Mean+Shift+Clustering
注:目前主要用于图像分割和跟踪等计算机视觉领域
Latent Dirichlet Allocation(LDA)
https://cwiki.apache.org/confluence/display/MAHOUT/Latent+Dirichlet+Allocation
注:经典方法,附论文英文原著论文 http://machinelearning.wustl.edu/mlpapers/paper_files/BleiNJ03.pdf (引用数:6829)
http://www.docin.com/p-413125834.html (基于LDA话题演化研究方法综述)
http://leyew.blog.51cto.com/5043877/860255 (中文博客学习笔记)
http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/ (英文入门博客)
Pattern Mining 模式挖掘
Parallel Frequent Pattern Mining 并行频繁模式挖掘
https://cwiki.apache.org/confluence/display/MAHOUT/Parallel+Frequent+Pattern+Mining
论文http://wenku.baidu.com/view/9cce67ed172ded630b1cb615.html(在Query推荐中的应用)
Dimension reduction 降维
Singular Value Decomposition(SVD) 奇异值分解
https://cwiki.apache.org/confluence/display/MAHOUT/Dimensional+Reduction
SVD介绍: http://wenku.baidu.com/view/7f483a6b561252d380eb6ea6.html
Evolutionary Algorithms 进化算法
进化算法框架
进化算法介绍:
http://www.geatbx.com/docu/algindex.html
框架使用方法:
https://cwiki.apache.org/confluence/display/MAHOUT/Mahout.GA.Tutorial
注:目前mahout只是提供一套进化算法的并行化实现框架,但具体的进化算法,如遗传算法、模拟退火算法、蚁群算法等,还未集成到开发包中。
相关工具书
- 统计学习书籍
1. 统计学习基础 — 数据挖掘、推理与预测(中文版)
http://yunpan.taobao.com/share/link/R56BeLI6O
注:此书英文版每年都在更新,但是中文版只有2004年一版,而且网上纸质书早就脱销了,由于是统计学习基础,所以大多数经典内容还是可读的;
2. 统计学习基础 — 数据挖掘、推理与预测(英文版)(The Elements of Statistical Learning)
http://yunpan.taobao.com/share/link/D56BeLKYE
目前的最新版,第二版(09年)的的第10次印刷版本(13年)
可与中文版对照看
- 概率论与数理统计基础书籍
1. 浙大概率论与数理统计第三版
http://yunpan.taobao.com/share/link/U56BeLWBT
经典的教科书
2. 统计学完全教程(中文版)
http://yunpan.taobao.com/share/link/756BeLYAa
统计学的百科全书
- 数据挖掘概述书籍
1. 数据挖掘导论(中文版)
http://yunpan.taobao.com/share/link/O56BeLoPx
2. Data Mining.Concepts and Techniques.3Ed(英文版)
http://yunpan.taobao.com/share/link/256BeLopX
注:中文版还是2000年的老版,起不到参考作用,所以放了最新的英文版
- 统计学习在自然语言处理方面应用的书籍
1.统计自然语言处理基础(中文版)
http://yunpan.taobao.com/share/link/25VBpL7X
其它
更多更新可见wiki: http://searchwiki.taobao.ali.com/index.php/PbaseLearning/mahout
http://www.xiaoyaochong.net/wordpress/index.php/2013/10/12/mahout%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%96%99%E6%95%B4%E7%90%86/