题意:
给出一个仙人掌图,然后求他的前K小生成树。
思路:
先给出官方题解
由于图是一个仙人掌,所以显然对于图上的每一个环都需要从环上取出一条边删掉。所以问题就变
为有 M 个集合,每个集合里面都有一堆数字,要从每个集合中选择一个恰好一个数加起
来。求所有的这样的和中,前 K 大的是哪些。这就是一个经典问题了。
点双联通就不说了 都一眼能看出来做法就是缩点之后每个环每次取一个,然后找最大的k个所以这道题的难点就在这里,做法当然是不知道啦,看了题解和博客才懂的。以前做过两个集合合并的,这个是k个合并,和两个集合合并差不多,不过感觉很厉害啊。。就是先两个合并,然后和第三个合并,在和第四个,然后就可以了。。复杂度的话题解说的O(KM)。。。那就O(KM)吧,反正这个是真不会证过程挺厉害的 在合并的时候
void merge(vector<int> &V , vector<int> B) { priority_queue< opt > Q; for (int i = 0 ; i < B.size() ; ++ i) { Q.push((opt) {V[0] + B[i] , i , 0}); } W.resize(0); while (W.size() < K && !Q.empty()) { auto it = Q.top(); Q.pop(); W.push_back(it.w); if (it.y + 1 < V.size()) { ++ it.y; Q.push((opt) {B[it.x] + V[it.y] , it.x , it.y}); } } V = W; }
最开始一直没看懂 看了一天呀。。。 后来想通了感觉还是挺简单的,然后在本机跑,没开O2跑了大半辈子。。。
具体过程其实就是对于每个已经合并了的数组,最开始让他最大的和B数组合并,然后对于已经合并了的数组,如果当前
的这一位被push进答案数组,那么就把先合并数组的次大的和B数组的当前数字合并就可以了。
思路挺厉害的~
代码就贴标程的吧~
#include <bits/stdc++.h>
using namespace std;
const int N = 1005;
int n , m , K;
struct opt {
int w , x , y;
bool operator < (const opt& R) const {
return w < R.w;
}
};
vector<int> W;
void merge(vector<int> &V , vector<int> B) {
priority_queue< opt > Q;
for (int i = 0 ; i < B.size() ; ++ i) {
Q.push((opt) {V[0] + B[i] , i , 0});
}
W.resize(0);
while (W.size() < K && !Q.empty()) {
auto it = Q.top(); Q.pop();
W.push_back(it.w);
if (it.y + 1 < V.size()) {
++ it.y;
Q.push((opt) {B[it.x] + V[it.y] , it.x , it.y});
}
}
V = W;
}
int pre[N] , mcnt;
struct edge {
int x , w , next;
} e[N << 2];
vector<int> res;
int dfn[N] , low[N] , ncnt;
stack<int> S;
void dfs(int x , int fa) {
dfn[x] = low[x] = ++ ncnt;
for (int i = pre[x] ; ~i ; i = e[i].next) {
int y = e[i].x;
if (!dfn[y]) {
S.push(i);
dfs(y , i ^ 1);
low[x] = min(low[x] , low[y]);
if (low[y] > dfn[x]) {}//(x , y) is bridge
if (low[y] >= dfn[x]) {
int j;
vector<int> V;
do {
j = S.top();
S.pop();
V.push_back(e[j].w);
} while (j != i);
if (V.size() > 1) {
//cout << V.size() << endl;
//for (auto &x : V) cout << x << ' '; cout << endl;
merge(res , V);
}
}
} else if (i != fa && dfn[y] < dfn[x])
S.push(i) , low[x] = min(low[x] , dfn[y]);
}
}
void work() {
memset(pre , -1 , sizeof(pre));
mcnt = ncnt = 0;
int sum = 0;
for (int i = 0 ; i < m ; ++ i) {
int x , y , z;
scanf("%d%d%d" , &x , &y , &z);
e[mcnt] = (edge) {y , z , pre[x]} , pre[x] = mcnt ++;
e[mcnt] = (edge) {x , z , pre[y]} , pre[y] = mcnt ++;
sum += z;
}
scanf("%d" , &K);
res.resize(0);
res.push_back(0);
memset(dfn , 0 , sizeof(dfn));
dfs(1 , 0);
int w = 0;
for (int i = 0 ; i < res.size() ; ++ i) {
w += (i + 1) * (sum - res[i]);
}
static int ca = 0;
printf("Case #%d: %u\n" , ++ ca , w);
}
int main() {
res.reserve(100001);
W.reserve(100001);
while (~scanf("%d%d" , &n , &m)) {
work();
}
return 0;
}