《构建之法》第三章 学习笔记

软件工程师的成长

个人能力的衡量与发展

软件系统的绝大部分模块都是由个人开发或者维护的,这些单个的成员叫做Individual Contributor(IC)。

IC在团队中的工作流程如下:

  1. 通过交流、实验、快速原型等方法,理解问题、需求或任务。
  2. 提出多种解决方法并估计工作量。(包括寻找以前的方案)
  3. 与相关角色交流解决问题的提案,确定一个可行的方案。
  4. 执行,把想法变成实际能工作的代码,同时验证方案的可行性和其他特性(例如程序的效能)。
  5. 和团队其他角色合作,在测试环境中实现方案,修复缺陷(bug)。如果此方案有严重的问题,就考虑其他方案。
  6. 发布解决方案后对结果负责。

初级软件工程师的成长

  • 积累软件开发相关的知识,提升技术技能,例如编程语言的掌握,诊断/提高效能的技术,对设备驱动程序、内核调试器、开发平台的掌握。
  • 积累问题领域的知识和经验。
  • 对通用的软件设计思想和软件工程思想的理解。
  • 提升职业技能,例如自我管理的能力、表达和交流的能力、与人合作的能力、按质按量完成任务的执行力。
  • 实际成果

团队对个人的期望

  • 交流。
  • 说到做到。
  • 接受团队赋予的角色并按要求完成工作。
  • 全力投入团队的活动。
  • 按照团队流程的要求工作。
  • 在各项任务前做好准备工作。
  • 理性地工作。

思维误区

  • 分析麻痹。想弄清所有的细节、所有的依赖关系之后再动手,心理上过于悲观,不想修复问题,出了问题都赖在相关问题上。
  • 不分主次、想解决所有依赖问题。想马上动手修复所有的主要和次要依赖问题。
  • 过早优化。陷入局部问题,花费大量时间进行优化。“过早优化是一切罪恶的根源”。
  • 过早扩大化/泛化。在我看来其实和“过早优化”属于同一个方面,即陷入局部问题,浪费过多时间。

技能的反面

巴克斯顿(Bill Buxton)说的技能的反面是解决(低层次)问题(Problem Solving)。要将提高技能,就要通过不断地练习,把低层次的问题都解决了,变成不用经过大脑的自动操作,然后才有时间和脑力来解决较高层次的问题。

注意在学习的时候,要确保自己学习的内容适合自己当前的状况,避免进入学习恐慌区,出现拖延症的现象。

感想

这一章给我的感觉就是很真实,很多地方都有切身的体会,比如“过早优化”,陷入技能的反面——解决问题中这些,不只是在编程中,在生活的方方面面都有类似的问题。引以为诫。

转载于:https://www.cnblogs.com/thechosenone95/p/9929491.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您解答这个问题!本次我们将学习如何用 Python 实现《机器学习》周志华教授第十四章中的概率图模型习题。在这里,我们将使用 Python 的 pgmpy 库来构建和分析概率图模型。 首先,我们需要安装 pgmpy。可以使用 pip 安装: ```python pip install pgmpy ``` 安装完成后,我们就可以开始实现习题了。 #### 习题 14.1 考虑一个三元组 $(X, Y, Z)$,其中 $X$ 是二元随机变量,$Y, Z$ 是一元随机变量,试构造一个无向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个无向图模型。代码如下: ```python from pgmpy.models import MarkovModel # 创建一个空的无向图模型 model = MarkovModel() # 添加变量节点 model.add_nodes_from(['X', 'Y', 'Z']) # 添加边 model.add_edges_from([('X', 'Y'), ('X', 'Z')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y', 'Z'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的无向图模型,然后添加了三个变量节点 $X, Y, Z$ 和两条边 $(X, Y), (X, Z)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 #### 习题 14.2 考虑一个四元组 $(X_1, X_2, X_3, X_4)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image.png](attachment:image.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X3', 'X2'), ('X4', 'X2')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了四个变量节点 $X_1, X_2, X_3, X_4$ 和四条边 $(X_2, X_1), (X_3, X_1), (X_3, X_2), (X_4, X_2)$。最后,我们打印出了模型的边结构。 #### 习题 14.3 考虑一个五元组 $(X_1, X_2, X_3, X_4, X_5)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-2.png](attachment:image-2.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X2'), ('X5', 'X3')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了五个变量节点 $X_1, X_2, X_3, X_4, X_5$ 和五条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_2), (X_5, X_3)$。最后,我们打印出了模型的边结构。 #### 习题 14.4 考虑一个六元组 $(X_1, X_2, X_3, X_4, X_5, X_6)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-3.png](attachment:image-3.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5', 'X6']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X3'), ('X6', 'X4'), ('X6', 'X5')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了六个变量节点 $X_1, X_2, X_3, X_4, X_5, X_6$ 和六条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_3), (X_6, X_4), (X_6, X_5)$。最后,我们打印出了模型的边结构。 #### 习题 14.5 考虑一个二元组 $(X, Y)$,其中 $X$ 是一元随机变量,$Y$ 是二元随机变量,试构造一个有向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X', 'Y1', 'Y2']) # 添加边 model.add_edges_from([('X', 'Y1'), ('X', 'Y2')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y1', 'Y2'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了三个变量节点 $X, Y_1, Y_2$ 和两条边 $(X, Y_1), (X, Y_2)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 以上就是本次的答案,希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值