P1024 一元三次方程求解

题目描述

有形如:ax^3+bx^2+cx^1+dx^0=0ax3+bx2+cx1+dx0=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在-100100至100100之间),且根与根之差的绝对值\ge 11。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后22位。

提示:记方程f(x)=0f(x)=0,若存在22个数x_1x1x_2x2,且x_1<x_2x1<x2f(x_1) \times f(x_2)<0f(x1)×f(x2)<0,则在(x_1,x_2)(x1,x2)之间一定有一个根。

输入输出格式

输入格式:

 

一行,44个实数A,B,C,DA,B,C,D。

 

输出格式:

 

一行,33个实根,并精确到小数点后22位。

 

输入输出样例

输入样例#1:  复制
1 -5 -4 20
输出样例#1:  复制
-2.00 2.00 5.00

解析1:暴力枚举(暴力出奇迹)
因为解的取值范围(-100~100),结果保留小数点后2位,完全可以枚举解决。需要注意的是,只有满足以下条件,才能确定解:
 double l=i,r=i+0.001;
        if((a*l*l*l+b*l*l+c*l+d)*(a*r*r*r+b*r*r+c*r+d)<0){
            printf("%.2lf ",l);
而不能直接
a*l*l*l+b*l*l+c*l+d=0,实数因为精度问题,结果未必能直接等于0
#include<iostream>
#include<cstdio>
using namespace std;
int main(){
    double a,b,c,d;
    int num=0;
    cin>>a>>b>>c>>d;
    for(double i=-100.00;i<=100.00;i+=0.001){
        double l=i,r=i+0.001;
        if((a*l*l*l+b*l*l+c*l+d)*(a*r*r*r+b*r*r+c*r+d)<0){// 若存在两个数x1,x2且x1<x2,f(x1)*f(x2)<0 则方程解肯定在x1~x2范围内  
            printf("%.2lf ",l);
            num++;// 小数点后两位输出
            if (num>=3)break;//找到3个解直接退出循环,提高时间复杂度。 
        }
    }
    return 0;    
}

 

解析2:二分

如果不会公式,可以根据题意:(根的范围在-100100至100100之间),且根与根之差的绝对值\ge 11,边枚举,边二分。

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=50050;
    double a,b,c,d;
double f(double x){
    return a*x*x*x+b*x*x+c*x+d ;    
}
int main(){
    cin>>a>>b>>c>>d;
    for(int i=-100;i<100;i++)
        if (f(i)*f(i+1)<0){
            double l=i,r=i+1,eps=1e-4,mid;
            for(int j=1;j<=100;j++){
                mid=(l+r)/2;
                if(f(l)*f(mid)<=0) {
                  r=mid;
                }
                else l=mid;
            }
            printf("%.2lf ",mid);
        }
        else if(f(i)==0) printf("%.2lf ",double(i));
    return 0;
}

 



转载于:https://www.cnblogs.com/ssfzmfy/p/10947905.html

### 回答1: 一元三次方程是指形如ax^3+bx^2+cx+d=的方程,其中a、b、c、d都是已知常数,x是未知数。 求解一元三次方程的一般步骤如下: 1. 将方程化为标准形式,即将x^3系数化为1,即可得到x^3+px^2+qx+r=的形式。 2. 通过代数运算,将方程化为一个二次方程和一个一次方程的组合形式,即x^3+px^2+qx+r=(x-a)(x^2+bx+c)的形式。 3. 解出二次方程x^2+bx+c=的两个根,即可得到三次方程的三个根,分别为a和二次方程的两个根。 求解一元三次方程的具体方法有很多,可以使用牛顿迭代法、三分法、高斯消元法等。在NOI竞赛中,一般使用高斯消元法来求解一元三次方程。 ### 回答2: 一元三次方程是指形如ax³+bx²+cx+d=0的方程,其中a、b、c、d都是已知系数,x是未知数。这是一个高阶多项式方程,求解方法也比较复杂。下面介绍一种较为常用的三次方程求解方法——套用“因式分解法”: 1. 将三次方程写成“因式分解”的形式,即(ax+b)(cx²+ex+f)=0,其中a、b、c、e、f都是已知系数,x是未知数。 2. 将第二个括号展开,得到cx³+(e+a)c²x+(f+ae+b)c+be=0。 3. 令y=cx,即方程变成了一个一元二次方程:y²+(e+a)y+(f+ae+b)c/be=0。 4. 解出y,再回代得到x的值。 需要注意的是,如果三次方程有重根或虚根,以上方法不适用,需要采用其他的求解方式。除此之外,还可以利用“维达定理”或牛顿迭代法等算法进行求解。 总之,求解一元三次方程需要掌握多种方法,根据具体情况选择合适的方法进行求解。在解题的过程中,要注意化简、观察特征、分析符号及系数等问题,同时也需要熟悉求根公式和基本的代数计算方法,才能顺利解决问题。 ### 回答3: 一元三次方程是指形如ax^3+bx^2+cx+d=0的方程,其中a、b、c、d为系数,x为未知数。解一元三次方程是高中数学中的一项重要内容,也是竞赛中常出现的题型。 解一元三次方程的方法有很多种,其中比较常用的有以下几种: 1.牛顿迭代法。该方法通常用于求解非线性方程,使用重复求解近似解的方法逼近准确解。但需要注意的是,该方法需要计算一定的导数,因此不太方便手工计算。 2.公式法。一元三次方程也有和一元二次方程一样的求根公式,但通常需要做一定的化简。比如,可以利用单项式恒等变形把一元三次方程化为一元二次方程,然后使用公式求解。 3.因式分解法。有些一元三次方程可以通过因式分解得到解,比如x^3-8=0,可以分解为(x-2)(x^2+2x+4)=0,从而得到三个解x=2、x=-1+i√3、x=-1-i√3。 4.牛顿-拉弗森法。该方法也是一种迭代方法,通常用于求根问题。但由于需要计算导数,因此不太适合手工计算。 总之,解一元三次方程需要根据具体情况选择合适的方法,并且需要注意精度问题,避免出现误差过大的情况。在竞赛中,还需要注意时间限制,尽量选择快速有效的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值