安徽师范大学数学计算机徐德琴,Snake模型在指纹图像分割中的应用

Snake模型在指纹图像分割中的应用

C m ue E gn ei n A p i t n计算机工程与应用 o p t n ier ga d p l ai s r n c o

2 1,7 7 0 14 ( )

25 0

S a e型在指纹图像分割中的应用 nk模

卞维新,徐德琴

BI AN e x n, W i i XU e i D qn

安徽师范大学数学计算机科学学院,安徽芜湖 2 10 400

Co l g f M a h ma i s a d Co u e ce c, h i No ma l e o t e t n mp t r S in e An u r l Un v r i W u u, h i 2 0 Ch n e c ie st y, h An u 4 0, i a 1 0

BI AN W e x n,XU Deq n. pplc i ii i A iaton of na m o l i inge prnt e m e aton. o put r S ke de n f r i s g nt i C m e Engi e i and ne r ng A pplc— ia

t n .0 14 ( )2 52 7 i s2 1。7 7:0—0 . o

Ab t a t T i ril su i s n h n e p n s g n a i n d man wh c i le d ma u e t p e e t r h mans e m sr c: h s t e t d e i t e f g r r t e me t t o i i h s r a y a c i i o a t r a r s n o t e i ta r meh d a d c mp r s t er me i n ee t . s d o h a ay i o h S a e to n o ae h i rt a d d tc sBa e n t e n l ss f t e n k mo e n h n ep i t i g s a fe— s d l a d t e f g r rn ma e, n e f c i t e ci e o t u mo e f r t e e me tt n f f g r r t s p e e t d E p rme t h w h t mp o e S a e l o i m i a t c n o v v r d l o h s g n a i o n e i s i r s n e . x e i n s o i p n s o t a i r v d n k ag rt h

p o de a c ae hi h-e outon eg e a i r s t. r vi s c u t g r s l i s m ntton e uls r K e w o ds: s m e a i y r eg ntton; S

na e k m od l e r y f e; ne g unci n to

要:究了指纹图像分割领域中目前已经成熟的或主流的方法,研分析和比较了它们的优缺点。结合指纹图像的自身特点和

Sae nk模型的分析,出了一种有效的主动轮廓线模型分割指纹图像的方法。实验表明这种方法能够更加精确、提高效地完成对指

纹图像的分割。

关键词:分割; n k模型; Sae能量函数 D:03 7 ̄is. 0—3 1 0 1 70 9文章编号:0 28 3 (0 10—2 50 文献标识码: OI1 . 8 . n1 28 3 . 1. .5 7 s 0 2 0 10,3 1 2 1) 70 0—3 A中图分类号: P 9 T 31

1引言

在 AFS的处理中为了提高系统的识别率和执行速度, I通

与模型相关的能量函数为:

常要对原指纹图像进行分割,以集中精力对有效指纹区域进行处理,而把非指纹区域在预处理阶段就早早地驱除在外,使得在后续处理中大大缩小处理区域,从而提高系统的执行速度和准确提取指纹细节特征。目前很多文献都对指纹图像分割进行了研究n主要依据指纹图像的灰度和方向特性采用。,参数的方法进行指纹分割,大部分指纹图像可以起到较好对的分割效果,但往往会产生误分割区或不能有效去除背景区。主动轮廓线模型 ( S a e即 n模型 ) Kas k是 s等人于 1 8年首 97次提出的算法。近 2年来, 0主动轮廓模型在边缘检测、图像分割以及运动跟踪中已经有了广泛的应用和很大的发展,

目前也是计算机视觉领域最活跃的研究主题之一。S a e n模 k型基于二维曲线生长的思想,通过实现相关能量函数的最小

E l’l l )+。(d: ( v IE() l )”2 v+ ( I v)

( 2 )

式中的积分项为内部能量函数,记为 En 。它体现了对 S a e n k曲线连续性和平滑性的约束。V() v () t和”分别为曲线的一 阶导数和二阶导数,和各自的加权系数。式中丘 n为为外部能量函数,引导轮廓线向期待的轮廓边缘移动:它

En - xYf r。= I,) o W(

.

= -

, .

() 3

Io x )( ) v , ( ,, l

Ix Y为原始图

像, (, )方差为 O Gu s函数, (,) G Y是 -的 as v是梯度算子。 事实上大多数图像仅仅在轮廓边缘处有较大的梯度值, 因此图像的边缘检测可以通过式 ( ) 3中定义的简单的外部能量函数 E实现。但是对于指纹图像来说大的梯度值并不来

仅仅出现在轮廓边缘,而且出现在指纹的脊线和谷的交界处,

化来完成检测轮廓的任务。结合指纹图像自身的特点,中文改进了 S ae n k的能量函数,据改进的约束力可以准确、依有效地提取出指纹图像的轮廓,后对轮廓点进行最小二乘拟合,然 得到平滑的轮廓曲线,进而完成对指纹图像的分割。

因此在用 S a e型来提取指纹图像轮廓时, ( ) nk模式 3中定义的 E不能有效地使轮廓线逼近指纹图像的真实轮廓,就因此文中对传统 S a e n k模型的能量函数进行了改进。

2传统 S a e型 nk模

3局部灰度方差

定义 mx的指纹图像,(,)0 im,< )是 n, f (<< 0『是像素点 J

传统 sae nk模型可以表示为定义在∈0 1【,上的参数曲]

线,即

(√) f的灰度值。令 Men (,) W× a是 f,在 _ w邻域的灰度均值,a Vr

v )[ (][ 1 (= ), 0】 (, ) ,

() 1

为(√) f在该邻域内的灰度方差,则有:

基金项甘:安徽师范大学青年基金 ( o 0 8 q 5 )安徽师范大学青年基金 ( o 0 9 q 5 ) N . 0xn0; 2 N . 0xn 9。 2 作者简介:维新 ( 9 4 )男,卞 1 7一,讲师,主要研究领域为图像处理和模式识别;德琴 (9 3 )女,徐 17一,讲师。E m l fn e o tm - a: i@t o i Ni m. l收稿日: 0——9修回日期:0 00—9期 2 9 62; 0 0 2 1—31

1-2004-png_6_0_0_0_0_840_1179_840_1179-1430-0-0-1430.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值