3790:最短路径问题(HDU)

Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
 

 

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
 

 

Output
输出 一行有两个数, 最短距离及其花费。
 

 

Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
 

 

Sample Output
9 11
 

 

Source
哎,终于出来了
 1 #include<iostream>
 2 #include<map>
 3 #include<cstdio>
 4 using namespace std;
 5 #define inf 1000000000
 6 int s, t;
 7 int n, m,k;
 8 struct  di
 9 {
10     int s, money; 11 }dis[1010]; 12 struct e 13 { 14 int from, to, distance, cost; 15 }es[100010]; 16 void ds() 17 { 18 dis[s].s = 0; 19 while (true) 20  { 21 bool update = false; 22 for (int i = 0; i < k; i++) 23  { 24 if (dis[es[i].from].s != inf && (dis[es[i].to].s > dis[es[i].from].s + es[i].distance )) 25  { 26 dis[es[i].to].s = dis[es[i].from].s + es[i].distance; 27 dis[es[i].to].money = dis[es[i].from].money + es[i].cost; 28 update = true; 29  } 30 else if(dis[es[i].to].s == dis[es[i].from].s + es[i].distance&&dis[es[i].to].money > dis[es[i].from].money + es[i].cost) 31  { 32 dis[es[i].to].s = dis[es[i].from].s + es[i].distance; 33 dis[es[i].to].money = dis[es[i].from].money + es[i].cost; 34  } 35  } 36 if (!update) break; 37  } 38 printf("%d %d\n", dis[t].s, dis[t].money); 39 } 40 int main() 41 { 42 while (cin >> n >> m, n != 0 && m != 0) 43  { 44 k = 0; 45 for (int i = 0; i < m; i++) 46  { 47 int a, b, c, d; 48 scanf("%d %d %d %d", &a,&b,&c,&d); 49 es[k].from = a, es[k].to = b, es[k].distance = c, es[k++].cost = d; 50 es[k].from = b, es[k].to = a, es[k].distance = c, es[k++].cost = d; 51  } 52 for (int i = 0; i <= n; i++) 53  { 54 dis[i].s = inf; 55 dis[i].money = 0; 56  } 57 scanf("%d %d", &s, &t); 58  ds(); 59  } 60 return 0; 61 }

 

 

这是网上大佬的方法,为方便复习,拿来用了;

思路是djkstra的算法,当时我也想用了的,就是不太清楚cost给怎么定义,所以就用了bellman-ford,下次用队列优化的bellman-ford试试

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 #define maxn 1007
 5 #define INF 65535
 6 using namespace std;
 7 
 8 int start,e;
 9 int n,m;
10 int map[maxn][maxn];
11 int cost[maxn][maxn];
12 
13 void Dijkstra() 14 { 15 int v,Min,vis[maxn]; 16 int d[maxn],c[maxn]; 17 for(int i = 1;i <= n;i++) { 18 d[i] = map[start][i]; 19 c[i] = cost[start][i]; 20  } 21 memset(vis,0,sizeof(vis)); 22 vis[start] = 1; 23 for(int i = 1;i <= n;i++) 24  { 25 if(vis[e]) break; 26 Min = INF; 27 for(int j = 1;j <= n;j++) 28 if(!vis[j] && d[j]<Min) 29 Min = d[v=j]; 30 vis[v] = 1; 31 for(int j = 1;j <= n;j++) 32 if(!vis[j] && map[v][j]<INF) { 33 if(d[j] > d[v]+map[v][j]) { 34 d[j] = d[v]+map[v][j]; 35 c[j] = c[v]+cost[v][j]; 36  } 37 else if(d[j] == d[v]+map[v][j]) 38 if(c[j] > c[v]+cost[v][j]) 39 c[j] = c[v]+cost[v][j]; 40  } 41  } 42 printf("%d %d\n",d[e],c[e]); 43 } 44 45 int main() 46 { 47 while(scanf("%d%d",&n,&m) && n+m) 48  { 49 for(int i = 1;i <= n;i++) 50 for(int j = 1;j <= n;j++) { 51 map[i][j] = i==j?0:INF; 52 cost[i][j] = i==j?0:INF; 53  } 54 int a,b,c,d; 55 for(int i = 1;i <= m;i++) 56  { 57 scanf("%d%d%d%d",&a,&b,&c,&d); 58 if(map[a][b]>c) 59  { 60 map[a][b]=map[b][a]=c; 61 cost[a][b]=cost[b][a]=d; 62  } 63 else if(map[a][b]==c) 64  { 65 if(cost[a][b]>d) 66 cost[a][b]=cost[b][a]=d; 67  } 68  } 69 scanf("%d%d",&start,&e); 70  Dijkstra(); 71  } 72 return 0; 73 }

 

转载于:https://www.cnblogs.com/kangdong/p/8854041.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值