package org.loda.graph;
import org.loda.structure.Stack;
import org.loda.util.In;
/**
*
* @ClassName: NoCycleSP
* @Description: 有向无环图的最短路径算法
*
* 无环图可以采用拓扑排序来处理,进行拓扑排序中不会有排名靠后的指向排名靠前的情况,所以拓扑排序的第一个节点是无法从其他节点抵达的
*
* 无环权重有向图的算法时间复杂度可以高达O(V+E),比Dijkstra算法更好,并且能解决负数权重问题,不过他需要有向图是无环的
*
* @author minjun
* @date 2015年5月28日 上午9:47:26
*
*/
public class NoCycleSP {
/**
* 原点
*/
private int s;
/**
* dist[i]表示s->i的距离
*/
private double[] dist;
/**
* 最短路径上的前驱顶点
*/
private int[] prev;
public NoCycleSP(WeightDigraph g, int s) {
int v = g.v();
this.s = s;
dist = new double[v];
prev = new int[v];
for (int i = 0; i < v; i++) {
prev[i] = -1;
dist[i] = Double.POSITIVE_INFINITY;
}
dist[s] = 0.0;
// 将权重有向图转成无权有向图图,然后进行拓扑排序
Topological top = new Topological(g.toDigraph());
for (int i : top.order()) {
relax(i, g);
}
}
/**
*
* @Title: relax
* @Description: 松弛某个顶点周围的边
* @param @param i
* @param @param g 设定文件
* @return void 返回类型
* @throws
*/
private void relax(int i, WeightDigraph g) {
for (Edge edge : g.adj(i)) {
int j = edge.otherSide(i);
if (dist[j] > dist[i] + edge.weight()) {
dist[j] = dist[i] + edge.weight();
prev[j] = i;
}
}
}
/**
*
* @Title: distTo
* @Description: s->v的最短距离
* @param @param v
* @param @return 设定文件
* @return double 返回类型
* @throws
*/
public double distTo(int v) {
return dist[v];
}
/**
*
* @Title: pathTo
* @Description: 最短路径
* @param @param v
* @param @return 设定文件
* @return Iterable<Integer> 返回类型
* @throws
*/
public Iterable<Integer> pathTo(int v) {
if (distTo(v) == Double.POSITIVE_INFINITY)
return null;
Stack<Integer> path = new Stack<Integer>();
for (int i = v; i != -1; i = prev[i]) {
path.push(i);
}
return path;
}
public static void main(String[] args) {
WeightDigraph g = new WeightDigraph(new In(
"F:\\算法\\attach\\tinyEWDAG.txt"));
//由于无法从其他节点到达5节点(拓扑排序第一个节点),所以这里我们采用5节点作为第一个节点,来观察所有的可达路径
NoCycleSP d = new NoCycleSP(g, 5);
for (int i = 0; i < g.v(); i++) {
Iterable<Integer> path = d.pathTo(i);
if (path == null) {
System.out.println("从原点" + d.s + "到" + i + "没有可达路径");
} else {
System.out.println("从原点" + d.s + "到" + i + "的最短距离为:"
+ d.distTo(i));
System.out.print("路径为:");
for (int j : d.pathTo(i)) {
System.out.print(j + "->");
}
System.out.println();
}
}
}
}
文本数据:
8
13
5 4 0.35
4 7 0.37
5 7 0.28
5 1 0.32
4 0 0.38
0 2 0.26
3 7 0.39
1 3 0.29
7 2 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93
从原点5到0的最短距离为:0.73
路径为:5->4->0->
从原点5到1的最短距离为:0.32
路径为:5->1->
从原点5到2的最短距离为:0.6200000000000001
路径为:5->7->2->
从原点5到3的最短距离为:0.61
路径为:5->1->3->
从原点5到4的最短距离为:0.35
路径为:5->4->
从原点5到5的最短距离为:0.0
路径为:5->
从原点5到6的最短距离为:1.13
路径为:5->1->3->6->
从原点5到7的最短距离为:0.28
路径为:5->7->