题目链接:http://poj.org/problem?id=3237
题意:给定一棵n个结点n-1条边的树。 每条边都是一个边权。 现在有4种操作
1:CHANGE I V:把(输入的)第i条边的边权改为V
2:NEGATE a b:把点a到点b的路径上的边权取反
3:QUERY a b:输出点a到点b的路径上边权最大值。
4:DONE:结束操作。
思路:树链剖分。 涉及的是边权所以把边权转化为点权,做法是将边权赋值到这条边deep大的点上。 剖分后用线段树维护。 1操作对应单点更新 2操作对应区间更新 3操作对应区间查询。
对于2操作。用线段树维护一个结点的最大值和最小值。那么反正相当于把最大值和最小值互换然后分别乘上个(-1)。
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cstring> #include<string> #include<algorithm> #include<stdio.h> #include<queue> #include<vector> #include<stack> #include<map> #include<set> #include<time.h> #include<cmath> #include<sstream> #include<assert.h> using namespace std; #define L(x) x<<1 #define R(x) x<<1|1 typedef long long int LL; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3fLL; const int MAXN = 20000 + 10; int val[MAXN],head[MAXN], tot, cnt, edgesId[MAXN]; struct Edge{ int to, next; int value; }Edges[MAXN * 2]; void add(int u, int v, int w){ Edges[tot].to = v; Edges[tot].value = w; Edges[tot].next = head[u]; head[u] = tot++; } int id[MAXN], son[MAXN], deep[MAXN], size[MAXN], fa[MAXN], reid[MAXN], top[MAXN]; void Init(){ tot = 1; cnt = 0; memset(head, -1, sizeof(head)); memset(son, -1, sizeof(son)); memset(val, 0, sizeof(val)); } void DFS1(int u, int p,int dep){ fa[u] = p; size[u] = 1; deep[u] = dep; for (int i = head[u]; i != -1; i = Edges[i].next){ if (Edges[i].to != p){ val[Edges[i].to] = Edges[i].value; //deep大的点获得边权 edgesId[(int)ceil(i / 2.0)] = Edges[i].to; DFS1(Edges[i].to, u,dep+1); size[u] += size[Edges[i].to]; if (son[u] == -1 || size[Edges[i].to] > size[son[u]]){ son[u] = Edges[i].to; } } } } void DFS2(int u, int tp){ id[u] = ++cnt; reid[id[u]] = u; top[u] = tp; if (son[u] == -1){ return; } DFS2(son[u], tp); for (int i = head[u]; i != -1; i = Edges[i].next){ if (son[u] != Edges[i].to&&Edges[i].to != fa[u]){ DFS2(Edges[i].to, Edges[i].to); } } } struct Node{ int st, ed; int lazy, Max, Min; }Seg[MAXN * 4]; void Build(int l, int r, int k){ Seg[k].st = l; Seg[k].ed = r; Seg[k].lazy = 0; if (l == r){ Seg[k].Max = Seg[k].Min = val[reid[l]]; return; } int mid = (l + r) / 2; Build(l, mid, L(k)); Build(mid + 1, r, R(k)); Seg[k].Max = max(Seg[L(k)].Max, Seg[R(k)].Max); Seg[k].Min = min(Seg[L(k)].Min, Seg[R(k)].Min); } void Modify(int k){ swap(Seg[k].Min, Seg[k].Max); Seg[k].Min *= -1; Seg[k].Max *= -1; } void pushUp(int k){ Seg[k].Max = max(Seg[L(k)].Max, Seg[R(k)].Max); Seg[k].Min = min(Seg[L(k)].Min, Seg[R(k)].Min); } void pushDown(int k){ if (Seg[k].lazy){ Seg[k].lazy ^= 1; Seg[L(k)].lazy ^= 1; Modify(L(k)); Seg[R(k)].lazy ^= 1; Modify(R(k)); } } void CHANGE(int pos, int val, int k){ if (Seg[k].st ==Seg[k].ed){ Seg[k].Max = Seg[k].Min = val; return; } pushDown(k); if (pos <= Seg[L(k)].ed){ CHANGE(pos, val, L(k)); } else{ CHANGE(pos, val, R(k)); } pushUp(k); } void NEGATE(int l, int r, int k){ if (Seg[k].st == l&&Seg[k].ed == r){ Seg[k].lazy ^= 1; Modify(k); return; } pushDown(k); if (r <= Seg[L(k)].ed){ NEGATE(l, r, L(k)); } else if (l >= Seg[R(k)].st){ NEGATE(l, r, R(k)); } else{ NEGATE(l, Seg[L(k)].ed, L(k)); NEGATE(Seg[R(k)].st, r, R(k)); } pushUp(k); } void NEGATE(int u, int v){ int f1 = top[u], f2 = top[v]; while (f1 != f2){ if (deep[f1] < deep[f2]){ swap(f1, f2); swap(u, v); } NEGATE(id[f1], id[u], 1); u = fa[f1]; f1 = top[u]; } if (u == v){ return; } if (deep[u] > deep[v]){ swap(u, v); } NEGATE(id[son[u]], id[v], 1); } int Query(int l, int r, int k){ if (Seg[k].st == l&&Seg[k].ed == r){ return Seg[k].Max; } int _Max = -inf; pushDown(k); if (r <= Seg[L(k)].ed){ _Max = Query(l, r, L(k)); } else if (l >= Seg[R(k)].st){ _Max = Query(l, r, R(k)); } else{ _Max = max(Query(l, Seg[L(k)].ed, L(k)), Query(Seg[R(k)].st, r, R(k))); } pushUp(k); return _Max; } int Query(int u, int v){ int ans = -inf; int f1 = top[u], f2 = top[v]; while (f1 != f2){ if (deep[f1] < deep[f2]){ swap(f1, f2); swap(u, v); } ans = max(ans, Query(id[f1], id[u], 1)); u = fa[f1]; f1 = top[u]; } if (u == v){ return ans; } if (deep[u] > deep[v]){ swap(u, v); } ans = max(ans, Query(id[son[u]], id[v], 1)); return ans; } int main(){ //#ifdef kirito // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); //#endif // int start = clock(); int n,t; scanf("%d", &t); while (t--){ scanf("%d", &n); Init(); for (int i = 1; i < n; i++){ int u, v, w; scanf("%d%d%d", &u, &v, &w); add(u, v, w); add(v, u, w); } DFS1(1, 1, 0); DFS2(1, 1); Build(1, n, 1); char ope[20]; while (scanf("%s",ope)&&ope[0]!='D'){ int u,v; scanf("%d%d", &u,&v); switch (ope[0]) { case 'Q': printf("%d\n", (u==v?0:Query(u, v))); break; case 'C': CHANGE(id[edgesId[u]], v, 1); break; default: NEGATE(u, v); break; } } } //#ifdef LOCAL_TIME // cout << "[Finished in " << clock() - start << " ms]" << endl; //#endif return 0; }