[HAOI2008]木棍分割

https://www.luogu.org/problem/show?pid=2511

题目描述

有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长度最大的一段长度最小. 并将结果[b]mod 10007[/b]。。。

输入输出格式

输入格式:

 

输入文件第一行有2个数n,m. 接下来n行每行一个正整数Li,表示第i根木棍的长度.

 

输出格式:

 

输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.

 

输入输出样例

输入样例#1:
3 2                           
1 
1
10
输出样例#1:
10 2

说明

两种砍的方法: (1)(1)(10)和(1 1)(10)

数据范围

n<=50000, 0<=m<=min(n-1,1000).

1<=Li<=1000.

 

第一问二分答案

第二问dp

dp[i][j] 表示前i根木棍,切了j刀的方案数

令ll[i] 表示第i根木棍向左最远能根第几根木棍连在一起

状态转移:dp[i][j] = Σ dp[k][j-1]  k∈[ ll[i],i ]

初始化:如果前i根木棍的和<二分的答案,dp[i][0]=1

ans=Σ dp[n][i]  i∈[0,m]

时间复杂度 O(n^3),空间:O(n^2)

TLE && MLE

时间可以通过前缀和优化至O(n^2)

空间可以压去第二维优化至O(n)

 

未优化 TLE && MLE代码

#include<cstdio>
#include<algorithm>
#define mod 10007
#define N 5001
using namespace std;
int n,m,ans;
int a[N],sum[N];
int l,r,mid,tmp;
int ll[N],dp[N][N];
bool check()
{
    if(a[1]>mid) return false;
    int now=a[1]; tmp=0;
    for(int i=1;i<n;i++)
    {
        if(now+a[i+1]>mid) 
        {
            if(a[i+1]>mid) return false;
            if(tmp<m) tmp++;
            else return false;
            now=a[i+1];
        }
        else now+=a[i+1];
    }
    return true;
}
void solve1()
{
    r=sum[n];
    while(l<=r)
    {
        mid=l+r>>1;
        if(check()) ans=mid,r=mid-1;
        else l=mid+1;
    }
    printf("%d ",ans); 
}
void solve2()
{
    ll[1]=1;
    for(int i=2;i<=n;i++)
     for(int j=ll[i-1];j<=i;j++)
      if(sum[i]-sum[j-1]<=ans) 
      {
           ll[i]=j;
           break;
      }
    for(int i=1;i<=n;i++) if(sum[i]<=ans) dp[i][0]=1; else break; 
    for(int i=2;i<=n;i++)
     for(int j=1;j<=min(i-1,m);j++)
         for(int k=ll[i]-1;k<i;k++) dp[i][j]+=dp[k][j-1];
    ans=0;
    for(int i=0;i<=m;i++) ans=(ans+dp[n][i])%mod;
    printf("%d",ans);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    solve1(); 
    solve2();
}

 

优化 后 AC代码

#include<cstdio>
#include<algorithm>
#define N 50001
using namespace std;
const int mod=10007;
int n,m,ans;
int a[N],sum[N];
int l,r,mid,tmp;
int ll[N],dp[N],f[N];
bool check()
{
    if(a[1]>mid) return false;
    int now=a[1]; tmp=0;
    for(int i=1;i<n;i++)
    {
        if(now+a[i+1]>mid) 
        {
            if(a[i+1]>mid) return false;
            if(tmp<m) tmp++;
            else return false;
            now=a[i+1];
        }
        else now+=a[i+1];
    }
    return true;
}
void solve1()
{
    r=sum[n];
    while(l<=r)
    {
        mid=l+r>>1;
        if(check()) ans=mid,r=mid-1;
        else l=mid+1;
    }
    printf("%d ",ans); 
}
void solve2()
{
    ll[1]=1;
    for(int i=2;i<=n;i++)
     for(int j=ll[i-1];j<=i;j++)
      if(sum[i]-sum[j-1]<=ans) 
      {
           ll[i]=j;
           break;
      }
    for(int i=1;i<=n;i++) if(sum[i]<=ans) dp[i]=1; else break; 
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+dp[i];
    ans=dp[n];
    for(int j=1;j<=m;j++)
    {
        for(int i=1;i<=j;i++) dp[i]=0;
        for(int i=j+1;i<=n;i++) 
        {
            if(ll[i]-2<=0) dp[i]=sum[i-1];
            else dp[i]=(sum[i-1]-sum[ll[i]-2]+mod)%mod;
        }
        sum[0]=0;
        for(int i=1;i<=n;i++) sum[i]=(sum[i-1]+dp[i])%mod;
        ans=(ans+dp[n])%mod;
    }
    printf("%d",ans);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    solve1(); 
    solve2();
}

 

转载于:https://www.cnblogs.com/TheRoadToTheGold/p/7308711.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值