https://www.luogu.org/problemnew/show/P3959
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:L*K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋)。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
n很小,考虑状压。
那么f[s],s表示每个宝藏屋是否被开发,而f[s]为s状态下的最小总代价。
虽然我们不会怎么转移,但是我们会记忆化搜索,这就足够了。
先枚举宝藏屋为树根,再dfs,显然每种状态只会被更新n^2遍,所以总复杂度n^3*2^n。
#include<cstdio> #include<iostream> #include<queue> #include<cstring> #include<algorithm> #include<cctype> using namespace std; const int N=13; const int INF=1e9; inline int read(){ int X=0,w=0;char ch=0; while(!isdigit(ch)){w|=ch=='-';ch=getchar();} while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar(); return w?-X:X; } int d[N][N],f[1<<N],dep[N],n,m; void dp(int s){ int ans=INF; for(int u=1;u<=n;u++){ if(s&(1<<u>>1)){ for(int v=1;v<=n;v++){ if(d[u][v]!=INF&&(!(s&(1<<v>>1)))){ if(f[s|(1<<v>>1)]>f[s]+d[u][v]*dep[u]){ f[s|(1<<v>>1)]=f[s]+d[u][v]*dep[u]; int tmp=dep[v]; dep[v]=dep[u]+1; dp(s|(1<<v>>1)); dep[v]=tmp; } } } } } } inline void init(){ for(int i=0;i<(1<<n);i++)f[i]=INF; for(int i=1;i<=n;i++)dep[i]=INF; } int main(){ n=read(),m=read(); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) d[i][j]=INF; for(int i=1;i<=m;i++){ int u=read(),v=read(),w=read(); d[u][v]=min(d[u][v],w); d[v][u]=min(d[v][u],w); } int ans=INF; for(int i=1;i<=n;i++){ init(); dep[i]=1;f[1<<i>>1]=0; dp(1<<i>>1); ans=min(ans,f[(1<<n)-1]); } printf("%d\n",ans); return 0; }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++