线性回归中常见的一些统计学术语(RSE RSS TSS ESS MSE RMSE R2 Pearson's r)

本文介绍了线性回归中的一些关键统计概念,包括TSS(总离差平方和)、RSS(残差平方和)、ESS(回归平方和)、R2(决定系数)、adjusted R2、MSE(均方误差)、RMSE(均方根误差)和RSE(残差标准误差),以及Pearson's r(皮尔逊相关系数)。这些术语对于理解和评估模型的解释力及效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差

 

RSS: Residual Sum of Squares (残差平方和) ---  由误差导致的真实值和估计值之间的偏差平方和(Sum Of Squares Due To Error)

 

ESS: Explained Sum of Squares (回归平方和) ---  被模型解释的方差(Sum Of Squares Due To Regression) 

 

TSS=RSS+ESS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值