Codeforces Round #332 (Div. 2) A. Patrick and Shopping 水题

A. Patrick and Shopping

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://codeforces.com/contest/599/problem/A

Description

Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a d1 meter long road between his house and the first shop and a d2 meter long road between his house and the second shop. Also, there is a road of length d3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house.

Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled

Input

The first line of the input contains three integers d1, d2, d3 (1 ≤ d1, d2, d3 ≤ 108) — the lengths of the paths.

  • d1 is the length of the path connecting Patrick's house and the first shop;
  • d2 is the length of the path connecting Patrick's house and the second shop;
  • d3 is the length of the path connecting both shops.

Output

Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.

Sample Input

10 20 30

Sample Output

60

HINT

 

题意

给你从a-b的距离,a-c的距离,b-c的距离,然后问你从a走到bc然后再回到原点的最小距离是多少

题解:

只有4种情况,都考虑一下,然后就好了

代码

#include<iostream>
#include<math.h>
using namespace std;

int main()
{
    long long d1,d2,d3;
    cin>>d1>>d2>>d3;
    long long ans = d1+d3+d2;
    ans = min(ans,2LL*d1+2LL*d3);
    ans = min(ans,2LL*d2+2LL*d3);
    ans = min(ans,2LL*d2+2LL*d1);
    cout<<ans<<endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值