归纳决策树ID3(Java实现)

先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。

table 1

outlooktemperaturehumiditywindyplay
sunnyhothighFALSEno
sunnyhothighTRUEno
overcasthothighFALSEyes
rainymildhighFALSEyes
rainycoolnormalFALSEyes
rainycoolnormalTRUEno
overcastcoolnormalTRUEyes
sunnymildhighFALSEno
sunnycoolnormalFALSEyes
rainymildnormalFALSEyes
sunnymildnormalTRUEyes
overcastmildhighTRUEyes
overcasthotnormalFALSEyes
rainymildhighTRUEno

这个问题当然可以用朴素贝叶斯法求解,分别计算在给定天气条件下打球和不打球的概率,选概率大者作为推测结果。

现在我们使用ID3归纳决策树的方法来求解该问题。

预备知识:信息熵

熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。

补充两个对数去处公式:

ID3算法

构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。

在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:

属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。

对每项指标分别统计:在不同的取值下打球和不打球的次数。

table 2

outlooktemperaturehumiditywindyplay
 yesno yesno yesno yesnoyesno
sunny23hot22high34FALSE6295
overcast40mild42normal61TRUR33  
rainy32cool31        

下面我们计算当已知变量outlook的值时,信息熵为多少。

outlook=sunny时,2/5的概率打球,3/5的概率不打球。entropy=0.971

outlook=overcast时,entropy=0

outlook=rainy时,entropy=0.971

而根据历史统计数据,outlook取值为sunny、overcast、rainy的概率分别是5/14、4/14、5/14,所以当已知变量outlook的值时,信息熵为:5/14 × 0.971 + 4/14 × 0 + 5/14 × 0.971 = 0.693

这样的话系统熵就从0.940下降到了0.693,信息增溢gain(outlook)为0.940-0.693=0.247

同样可以计算出gain(temperature)=0.029,gain(humidity)=0.152,gain(windy)=0.048。

gain(outlook)最大(即outlook在第一步使系统的信息熵下降得最快),所以决策树的根节点就取outlook。

接下来要确定N1取temperature、humidity还是windy?在已知outlook=sunny的情况,根据历史数据,我们作出类似table 2的一张表,分别计算gain(temperature)、gain(humidity)和gain(windy),选最大者为N1。

依此类推,构造决策树。当系统的信息熵降为0时,就没有必要再往下构造决策树了,此时叶子节点都是纯的--这是理想情况。最坏的情况下,决策树的高度为属性(决策变量)的个数,叶子节点不纯(这意味着我们要以一定的概率来作出决策)。

Java实现

最终的决策树保存在了XML中,使用了Dom4J,注意如果要让Dom4J支持按XPath选择节点,还得引入包jaxen.jar。程序代码要求输入文件满足ARFF格式,并且属性都是标称变量。

实验用的数据文件:

@relation weather.symbolic

@attribute outlook {sunny, overcast, rainy}
@attribute temperature {hot, mild, cool}
@attribute humidity {high, normal}
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no

程序代码:

package dt;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.dom4j.Document;
import org.dom4j.DocumentHelper;
import org.dom4j.Element;
import org.dom4j.io.OutputFormat;
import org.dom4j.io.XMLWriter;

public class ID3 {
	private ArrayList<String> attribute = new ArrayList<String>(); // 存储属性的名称
	private ArrayList<ArrayList<String>> attributevalue = new ArrayList<ArrayList<String>>(); // 存储每个属性的取值
	private ArrayList<String[]> data = new ArrayList<String[]>();; // 原始数据
	int decatt; // 决策变量在属性集中的索引
	public static final String patternString = "@attribute(.*)[{](.*?)[}]";

	Document xmldoc;
	Element root;

	public ID3() {
		xmldoc = DocumentHelper.createDocument();
		root = xmldoc.addElement("root");
		root.addElement("DecisionTree").addAttribute("value", "null");
	}

	public static void main(String[] args) {
		ID3 inst = new ID3();
		inst.readARFF(new File("/home/orisun/test/weather.nominal.arff"));
		inst.setDec("play");
		LinkedList<Integer> ll=new LinkedList<Integer>();
		for(int i=0;i<inst.attribute.size();i++){
			if(i!=inst.decatt)
				ll.add(i);
		}
		ArrayList<Integer> al=new ArrayList<Integer>();
		for(int i=0;i<inst.data.size();i++){
			al.add(i);
		}
		inst.buildDT("DecisionTree", "null", al, ll);
		inst.writeXML("/home/orisun/test/dt.xml");
		return;
	}

	//读取arff文件,给attribute、attributevalue、data赋值
	public void readARFF(File file) {
		try {
			FileReader fr = new FileReader(file);
			BufferedReader br = new BufferedReader(fr);
			String line;
			Pattern pattern = Pattern.compile(patternString);
			while ((line = br.readLine()) != null) {
				Matcher matcher = pattern.matcher(line);
				if (matcher.find()) {
					attribute.add(matcher.group(1).trim());
					String[] values = matcher.group(2).split(",");
					ArrayList<String> al = new ArrayList<String>(values.length);
					for (String value : values) {
						al.add(value.trim());
					}
					attributevalue.add(al);
				} else if (line.startsWith("@data")) {
					while ((line = br.readLine()) != null) {
						if(line=="")
							continue;
						String[] row = line.split(",");
						data.add(row);
					}
				} else {
					continue;
				}
			}
			br.close();
		} catch (IOException e1) {
			e1.printStackTrace();
		}
	}

	//设置决策变量
	public void setDec(int n) {
		if (n < 0 || n >= attribute.size()) {
			System.err.println("决策变量指定错误。");
			System.exit(2);
		}
		decatt = n;
	}
	public void setDec(String name) {
		int n = attribute.indexOf(name);
		setDec(n);
	}

	//给一个样本(数组中是各种情况的计数),计算它的熵
	public double getEntropy(int[] arr) {
		double entropy = 0.0;
		int sum = 0;
		for (int i = 0; i < arr.length; i++) {
			entropy -= arr[i] * Math.log(arr[i]+Double.MIN_VALUE)/Math.log(2);
			sum += arr[i];
		}
		entropy += sum * Math.log(sum+Double.MIN_VALUE)/Math.log(2);
		entropy /= sum;
		return entropy;
	}

	//给一个样本数组及样本的算术和,计算它的熵
	public double getEntropy(int[] arr, int sum) {
		double entropy = 0.0;
		for (int i = 0; i < arr.length; i++) {
			entropy -= arr[i] * Math.log(arr[i]+Double.MIN_VALUE)/Math.log(2);
		}
		entropy += sum * Math.log(sum+Double.MIN_VALUE)/Math.log(2);
		entropy /= sum;
		return entropy;
	}

	public boolean infoPure(ArrayList<Integer> subset) {
		String value = data.get(subset.get(0))[decatt];
		for (int i = 1; i < subset.size(); i++) {
			String next=data.get(subset.get(i))[decatt];
			//equals表示对象内容相同,==表示两个对象指向的是同一片内存
			if (!value.equals(next))
				return false;
		}
		return true;
	}

	// 给定原始数据的子集(subset中存储行号),当以第index个属性为节点时计算它的信息熵
	public double calNodeEntropy(ArrayList<Integer> subset, int index) {
		int sum = subset.size();
		double entropy = 0.0;
		int[][] info = new int[attributevalue.get(index).size()][];
		for (int i = 0; i < info.length; i++)
			info[i] = new int[attributevalue.get(decatt).size()];
		int[] count = new int[attributevalue.get(index).size()];
		for (int i = 0; i < sum; i++) {
			int n = subset.get(i);
			String nodevalue = data.get(n)[index];
			int nodeind = attributevalue.get(index).indexOf(nodevalue);
			count[nodeind]++;
			String decvalue = data.get(n)[decatt];
			int decind = attributevalue.get(decatt).indexOf(decvalue);
			info[nodeind][decind]++;
		}
		for (int i = 0; i < info.length; i++) {
			entropy += getEntropy(info[i]) * count[i] / sum;
		}
		return entropy;
	}

	// 构建决策树
	public void buildDT(String name, String value, ArrayList<Integer> subset,
			LinkedList<Integer> selatt) {
		Element ele = null;
		@SuppressWarnings("unchecked")
		List<Element> list = root.selectNodes("//"+name);
		Iterator<Element> iter=list.iterator();
		while(iter.hasNext()){
			ele=iter.next();
			if(ele.attributeValue("value").equals(value))
				break;
		}
		if (infoPure(subset)) {
			ele.setText(data.get(subset.get(0))[decatt]);
			return;
		}
		int minIndex = -1;
		double minEntropy = Double.MAX_VALUE;
		for (int i = 0; i < selatt.size(); i++) {
			if (i == decatt)
				continue;
			double entropy = calNodeEntropy(subset, selatt.get(i));
			if (entropy < minEntropy) {
				minIndex = selatt.get(i);
				minEntropy = entropy;
			}
		}
		String nodeName = attribute.get(minIndex);
		selatt.remove(new Integer(minIndex));
		ArrayList<String> attvalues = attributevalue.get(minIndex);
		for (String val : attvalues) {
			ele.addElement(nodeName).addAttribute("value", val);
			ArrayList<Integer> al = new ArrayList<Integer>();
			for (int i = 0; i < subset.size(); i++) {
				if (data.get(subset.get(i))[minIndex].equals(val)) {
					al.add(subset.get(i));
				}
			}
			buildDT(nodeName, val, al, selatt);
		}
	}

	// 把xml写入文件
	public void writeXML(String filename) {
		try {
			File file = new File(filename);
			if (!file.exists())
				file.createNewFile();
			FileWriter fw = new FileWriter(file);
			OutputFormat format = OutputFormat.createPrettyPrint(); // 美化格式
			XMLWriter output = new XMLWriter(fw, format);
			output.write(xmldoc);
			output.close();
		} catch (IOException e) {
			System.out.println(e.getMessage());
		}
	}
}

最终生成的文件如下:

<?xml version="1.0" encoding="UTF-8"?>

<root>
  <DecisionTree value="null">
    <outlook value="sunny">
      <humidity value="high">no</humidity>
      <humidity value="normal">yes</humidity>
    </outlook>
    <outlook value="overcast">yes</outlook>
    <outlook value="rainy">
      <windy value="TRUE">no</windy>
      <windy value="FALSE">yes</windy>
    </outlook>
  </DecisionTree>
</root>

用图形象地表示就是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值