支持向量机-在复杂数据上应用核函数

当我们遇到数据线性不可分时,就要用到核函数,将数据从低维的特征空间映射到高维。好处是:低维需要解决非线性问题,到了高维就变成了线性问题。

最流行的核函数:径向基函数(radial basis function)(rbf)

1. 加载数据集

from numpy import *
import matplotlib.pyplot as plt
def loadDataSet(fileName):
    """loadDataSet(对文件进行逐行解析,从而得到第行的类标签和整个数据矩阵)
    Args:
        fileName 文件名
    Returns:
        dataMat  数据矩阵
        labelMat 类标签
    """
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat, labelMat

2. 支持函数

def clipAlpha(aj, H, L):
    """clipAlpha(调整aj的值,使aj处于 L<=aj<=H)
    Args:
        aj  目标值
        H   最大值
        L   最小值
    Returns:
        aj  目标值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

3. 辅助函数(与Platt SMO算法基本一致)

  1. 与Platt SMO算法里的函数基本相同,只是引入了一个新变量KTup

class optStruct:
    """
    建立的数据结构来保存所有的重要值
    """
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        """
        Args:
            dataMatIn    数据集
            classLabels  类别标签
            C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
                控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
                可以通过调节该参数达到不同的结果。
            toler   容错率
            kTup    包含核函数信息的元组
        """

        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler

        # 数据的行数
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m, 1)))
        self.b = 0

        # 误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值。
        self.eCache = mat(zeros((self.m, 2)))

        # m行m列的矩阵
        self.K = mat(zeros((self.m, self.m)))
        for i in range(self.m):
            self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)

  2. 计算E值并返回。(与Platt SMO算法有点不同)

def calcEk(oS, k):
    """calcEk(求 Ek误差:预测值-真实值的差)
    该过程在完整版的SMO算法中陪出现次数较多,因此将其单独作为一个方法
    Args:
        oS  optStruct对象
        k   具体的某一行
    Returns:
        Ek  预测结果与真实结果比对,计算误差Ek
    """
    fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

  3. 选择第二个alpha。选择合适的第二个alpha以保证每次优化采用最大步长

def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
    """selectJ(返回最优的j和Ej)
    内循环的启发式方法。
    选择第二个(内循环)alpha的alpha值
    这里的目标是选择合适的第二个alpha值以保证每次优化中采用最大步长。
    该函数的误差与第一个alpha值Ei和下标i有关。
    Args:
        i   具体的第i一行
        oS  optStruct对象
        Ei  预测结果与真实结果比对,计算误差Ei
    Returns:
        j  随机选出的第j一行
        Ej 预测结果与真实结果比对,计算误差Ej
    """
    maxK = -1
    maxDeltaE = 0
    Ej = 0
    # 首先将输入值Ei在缓存中设置成为有效的。这里的有效意味着它已经计算好了。
    oS.eCache[i] = [1, Ei]
    validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:  # 在所有的值上进行循环,并选择其中使得改变最大的那个值
            if k == i:
                continue  # don't calc for i, waste of time

            # 求 Ek误差:预测值-真实值的差
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                # 选择具有最大步长的j
                maxK = k
                maxDeltaE = deltaE
                Ej = Ek
        return maxK, Ej
    else:  # 如果是第一次循环,则随机选择一个alpha值
        j = selectJrand(i, oS.m)

        # 求 Ek误差:预测值-真实值的差
        Ej = calcEk(oS, j)
    return j, Ej

  4. 计算误差值并存入缓存中

def updateEk(oS, k):
    """updateEk(计算误差值并存入缓存中。)
    在对alpha值进行优化之后会用到这个值。
    Args:
        oS  optStruct对象
        k   某一列的行号
    """

    # 求 误差:预测值-真实值的差
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1, Ek]
def selectJrand(i, m):
    """
    随机选择一个整数
    Args:
        i  第一个alpha的下标
        m  所有alpha的数目
    Returns:
        j  返回一个不为i的随机数,在0~m之间的整数值
    """
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j

4. 核转换函数

def kernelTrans(X, A, kTup):  # calc the kernel or transform data to a higher dimensional space
    """
    核转换函数
    Args:
        X     dataMatIn数据集
        A     dataMatIn数据集的第i行的数据
        kTup  核函数的信息
    Returns:
    """
    m, n = shape(X)
    K = mat(zeros((m, 1)))
    if kTup[0] == 'lin':
        # linear kernel:   m*n * n*1 = m*1
        K = X * A.T
    elif kTup[0] == 'rbf':
        for j in range(m):
            deltaRow = X[j, :] - A
            K[j] = deltaRow * deltaRow.T
        # 径向基函数的高斯版本
        K = exp(K / (-1 * kTup[1] ** 2))  # divide in NumPy is element-wise not matrix like Matlab
    else:
        raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
    return K

为了理解这段代码,我特地写了函数推导,见下图。图片很大,我把他上传到博客尾

5. 优化例程函数(与Platt SMO算法有点不同)

def innerL(i, oS):
    """innerL
    内循环代码
    Args:
        i   具体的某一行
        oS  optStruct对象
    Returns:
        0   找不到最优的值
        1   找到了最优的值,并且oS.Cache到缓存中
    """

    # 求 Ek误差:预测值-真实值的差
    Ei = calcEk(oS, i)

    # 约束条件 (KKT条件是解决最优化问题的时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值)
    # 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas。
    # 表示发生错误的概率:labelMat[i]*Ei 如果超出了 toler, 才需要优化。至于正负号,我们考虑绝对值就对了。
    '''
    # 检验训练样本(xi, yi)是否满足KKT条件
    yi*f(i) >= 1 and alpha = 0 (outside the boundary)
    yi*f(i) == 1 and 0<alpha< C (on the boundary)
    yi*f(i) <= 1 and alpha = C (between the boundary)
    '''
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        # 选择最大的误差对应的j进行优化。效果更明显
        j, Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy()
        alphaJold = oS.alphas[j].copy()

        # L和H用于将alphas[j]调整到0-C之间。如果L==H,就不做任何改变,直接return 0
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            # print("L==H")
            return 0

        # eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程
        # 参考《统计学习方法》李航-P125~P128<序列最小最优化算法>
        eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j]  # changed for kernel
        if eta >= 0:
            print("eta>=0")
            return 0

        # 计算出一个新的alphas[j]值
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        # 并使用辅助函数,以及L和H对其进行调整
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        # 更新误差缓存
        updateEk(oS, j)

        # 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环。
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            # print("j not moving enough")
            return 0

        # 然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小一样,但是改变的方向正好相反
        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
        # 更新误差缓存
        updateEk(oS, i)

        # 在对alpha[i], alpha[j] 进行优化之后,给这两个alpha值设置一个常数b。
        # w= Σ[1~n] ai*yi*xi => b = yi- Σ[1~n] ai*yi(xi*xj)
        # 所以:  b1 - b = (y1-y) - Σ[1~n] yi*(a1-a)*(xi*x1)
        # 为什么减2遍? 因为是 减去Σ[1~n],正好2个变量i和j,所以减2遍
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[i, j]
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[j, j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
    """
    完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些
    Args:
        dataMatIn    数据集
        classLabels  类别标签
        C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。
            控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。
            可以通过调节该参数达到不同的结果。
        toler   容错率
        maxIter 退出前最大的循环次数
        kTup    包含核函数信息的元组
    Returns:
        b       模型的常量值
        alphas  拉格朗日乘子
    """

    # 创建一个 optStruct 对象
    oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
    iter = 0
    entireSet = True
    alphaPairsChanged = 0

    # 循环遍历:循环maxIter次 并且 (alphaPairsChanged存在可以改变 or 所有行遍历一遍)
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0

        #  当entireSet=true or 非边界alpha对没有了;就开始寻找 alpha对,然后决定是否要进行else。
        if entireSet:
            # 在数据集上遍历所有可能的alpha
            for i in range(oS.m):
                # 是否存在alpha对,存在就+1
                alphaPairsChanged += innerL(i, oS)
                # print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
            iter += 1

        # 对已存在 alpha对,选出非边界的alpha值,进行优化。
        else:
            # 遍历所有的非边界alpha值,也就是不在边界0或C上的值。
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                # print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
            iter += 1

        # 如果找到alpha对,就优化非边界alpha值,否则,就重新进行寻找,如果寻找一遍 遍历所有的行还是没找到,就退出循环。
        if entireSet:
            entireSet = False  # toggle entire set loop
        elif (alphaPairsChanged == 0):
            entireSet = True
        print("iteration number: %d" % iter)
    return oS.b, oS.alphas

6. 在测试中使用核函数

def testRbf(k1=1.3):
    dataArr, labelArr = loadDataSet('F:/迅雷下载/machinelearninginaction/Ch06/testSetRBF.txt')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1))  # C=200 important
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]  # get matrix of only support vectors
    labelSV = labelMat[svInd]
    print("there are %d Support Vectors" % shape(sVs)[0])
    m, n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))

        # 和这个svm-simple类似: fXi = float(multiply(alphas, labelMat).T*(dataMatrix*dataMatrix[i, :].T)) + b
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]):
            errorCount += 1
    print("the training error rate is: %f" % (float(errorCount) / m))

    dataArr, labelArr = loadDataSet('F:/迅雷下载/machinelearninginaction/Ch06/testSetRBF2.txt')
    errorCount = 0
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    m, n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]):
            errorCount += 1
    print("the test error rate is: %f" % (float(errorCount) / m))
testRbf(0.8)
iteration number: 1
iteration number: 2
iteration number: 3
iteration number: 4
there are 16 Support Vectors
the training error rate is: 0.100000
the test error rate is: 0.190000
testRbf(0.1)
iteration number: 1
iteration number: 2
iteration number: 3
iteration number: 4
iteration number: 5
iteration number: 6
iteration number: 7
there are 88 Support Vectors
the training error rate is: 0.000000
the test error rate is: 0.080000

 7. 总结

k1=0.8时,有16个支持向量;k1=0.1时有88个支持向量。如果降低σ,那么训练错误率就会降低,但是测试错误率却会上升。也就是测试错误率存在一个最低点,也就是最优值。也即是支持向量的数目存在一个最优值。不能太多,也不能太少。

如果支持向量太多,(k1比较小)也就是相当于每次都利用整个数据集进行分类,这种分类方法成为k近邻

如果支持向量太少,(k1比较大)就可能得到一个很差的决策边界

 

转载于:https://www.cnblogs.com/gezhuangzhuang/p/9965819.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值