hdu2897(巴什博弈变形)

邂逅明下

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5303    Accepted Submission(s): 2468


Problem Description
当日遇到月,于是有了明。当我遇到了你,便成了侣。
那天,日月相会,我见到了你。而且,大地失去了光辉,你我是否成侣?这注定是个凄美的故事。(以上是废话)
小t和所有世俗的人们一样,期待那百年难遇的日食。驻足街头看天,看日月渐渐走近,小t的脖子那个酸呀(他坚持这个姿势已经有半个多小时啦)。他低下仰起的头,环顾四周。忽然发现身边竟站着位漂亮的mm。天渐渐暗下,这mm在这街头竟然如此耀眼,她是天使吗?站着小t身边的天使。
小t对mm惊呼:“缘分呐~~”。mm却毫不含糊:“是啊,500年一遇哦!”(此后省略5000字….)
小t赶紧向mm要联系方式,可mm说:“我和你玩个游戏吧,赢了,我就把我的手机号告诉你。”小t,心想天下哪有题目能难倒我呢,便满口答应下来。mm开始说游戏规则:“我有一堆硬币,一共7枚,从这个硬币堆里取硬币,一次最少取2枚,最多4枚,如果剩下少于2枚就要一次取完。我和你轮流取,直到堆里的硬币取完,最后一次取硬币的算输。我玩过这个游戏好多次了,就让让你,让你先取吧~”
小t掐指一算,不对呀,这是不可能的任务么。小t露出得意的笑:“还是mm优先啦,呵呵~”mm霎时愣住了,想是对小t的反应出乎意料吧。
她却也不生气:“好小子,挺聪明呢,要不这样吧,你把我的邮箱给我,我给你发个文本,每行有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完。两人轮流取,直到堆里的硬币取完,最后一次取硬币的算输。对于每一行的三个数字,给出先取的人是否有必胜策略,如果有回答WIN,否则回答LOST。你把对应的答案发给我,如果你能在今天晚上8点以前发给我正确答案,或许我们明天下午可以再见。”
小t二话没说,将自己的邮箱给了mm。当他兴冲冲得赶回家,上网看邮箱,哇!mm的邮件已经到了。他发现文本长达100000行,每行的三个数字都很大,但是都是不超过65536的整数。小t看表已经下午6点了,要想手工算出所有结果,看来是不可能了。你能帮帮他,让他再见到那个mm吗?
 

 

Input
不超过100000行,每行三个正整数n,p,q。
 

 

Output
对应每行输入,按前面介绍的游戏规则,判断先取者是否有必胜策略。输出WIN或者LOST。
 

 

Sample Input
7 2 4
6 2 4
Sample Output
LOST
WIN
 
分析:题意大概是有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,
一次最少取p枚,最多q枚,如果剩下少于等于p枚就要一次取完,两人轮流取,
直到堆里的硬币取完,最后一次取硬币的算输。(感觉应该加上“等于”)
 
1.当n%(p+q)==0,first先取q个,second取x个(p<=x<=q),first取(p+q-x)个,
 最终first会面临局面(p+q)个,first赢;
 
2.当n=(p+q)*k+res,k>0,0<res<=p,first取x个(p<=x<=q),
second取(p+q-x)个,则最后剩下res(0<res<=p)个给first,second赢;
 
3.n=(p+q)*k+res,k>0,p<res<p+q,first取q个,则second面临2的局面,
故first赢。
 
#include<cstdio>
int main()
{
    int n,p,q;
    while(scanf("%d%d%d",&n,&p,&q)!=EOF)
    {
        int t=n%(p+q);
        if(t==0||t>p) printf("WIN\n");
        else printf("LOST\n");
    }
    return 0;
}
View Code

 

 

转载于:https://www.cnblogs.com/ACRykl/p/8525353.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值