快速幂取模算法

1:利用a^b%n = (((a%c)*a)%c......)运算计算时间复杂度认为得到优化,O(b),但b很大是还是不行。

int modexp_simple(int a,int b,int n)
{
    int ret = 1;
    while (b--)
    {
        ret = a * ret % n;
    }
    return ret;
}

2:

算法2:另一种算法利用了二分的思想,可以达到O(logn)。
可以把b按二进制展开为:b = p(n)*2^n  +  p(n-1)*2^(n-1)  +…+   p(1)*2  +  p(0)
其中p(i) (0<=i<=n)为 0 或 1

这样 a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))
               =  a^(p(n)*2^n)  *  a^(p(n-1)*2^(n-1))  *...*  a^(p(1)*2)  *  a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) =  a^0  =  1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i)  = a^(2^(i-1)  * 2) = (  a^(  p(i)  *  2^(i-1)  )  )^2

利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1)))  %c
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果, 即二进制扫描从最高位一直扫描到最低位
 非递归算法:
#include <iostream>  
#define ll long long   
using namespace std;     
    
//计算a^b mod n     
ll modexp(ll a,ll b,ll n)     
{     
    ll ret=1;     
    ll tmp=a;     
    while(b)     
    {     
       //基数存在     
       if(b&0x1) ret=ret*tmp%n;     
       tmp=tmp*tmp%n;// 计算a^(2*i)  但b的二进制位是0的时候相当于ret*1所以不用考虑
       b>>=1;     
    }     
    return ret;     
}     
    
int main()     
{     
    cout<<modexp(2,10,3)<<endl;     
    return 0;     
}    

  


  递归实现:

/计算a^bmodn       
int modexp_recursion(int a,int b,int n)       
{      
    int t = 1;  
  
    if (b == 0)  
        return 1;  
  
    if (b == 1)  
         return a%n;  
  
    t = modexp_recursion(a, b>>1, n);  
  
    t = t*t % n;  
  
    if (b&0x1)  
    {      
        t = t*a % n;  
    }  
  
    return t;  
 }   

  

参考: http://blog.csdn.net/lsldd/article/details/5506933

 

 模板:

ll modmul(ll a,ll b, ll mod)
{
    ll res = 0;
    ll tmp = a;
    while (b)
    {
        if (b&1) res = (res + tmp)%mod;
        tmp = (tmp+tmp)%mod;
        b>>=1;
    }
    return res;
}
ll modexp(ll a,ll b,ll mod)
{
    ll res = 1;
    ll tmp = a;
    while (b)
    {
        if (b&1) res = modmul(res,tmp,mod);
        tmp = modmul(tmp,tmp,mod);
        b>>=1;
    }
    return res;
}

  

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值