题目大意:给定一个有重边,边有权值的无向图。从某一个点出发,求到达所有的点需要的最少费用,并且限制两点之间只有一条路径。费用的计算公式为:所有边的费用之和。而边$x->y$的费用就为:$y$到初始点的之间点的个数(包括起始点) $\times$ 边权。
题解:状压$DP$,令$f_{i,j}$表示当前深度为$i$,状态为$j$的最小花费
$$f_{i,s}=f_{i-1,t}+g_{s,t}\times(i−1)$$
再开一个数组$c_{s,i}表示状态$s$挖到点$i$的最小花费(不考虑深度)
用边权更新$c$数组,再用$c$数组更新$g$数组即可
卡点:1.$c$数组第二维开太小
C++ Code:
#include <cstdio>
#include <cstring>
#define lb(x) (x & -x)
#define maxn 13
using namespace std;
const int inf = 0x3f3f3f3f;
int n, m, U, ans = inf;
int e[maxn][maxn], c[maxn][1 << maxn | 3];
int g[1 << maxn | 3][1 << maxn | 3], f[maxn][1 << maxn | 3];
inline void getmin(int &a, int b) {if (a > b) a = b;}
inline int min(int a, int b) {return a < b ? a : b;}
int main() {
scanf("%d%d", &n, &m); U = 1 << n;
if (n == 1) {
puts("0");
return 0;
}
memset(e, 0x3f, sizeof e);
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
e[a][b] = e[b][a] = min(c, e[a][b]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j < U; j++) {
c[i][j] = inf;
if (!(j & (1 << i - 1))) {
for (int k = 1; k <= n; k++) {
if (j & (1 << k - 1)) getmin(c[i][j], e[i][k]);
}
}
}
}
for (int i = 1; i < U; i++) {
for (int j = i & i - 1; j; j = i & j - 1) {
int tmp = i ^ j;
for (int k = 1; k <= n; k++) {
if (tmp & (1 << k - 1)) {
g[i][j] += c[k][j];
if (g[i][j] > inf) g[i][j] = inf;
}
}
}
}
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++) f[1][1 << i - 1] = 0;
for (int i = 2; i <= n; i++) {
for (int j = 1; j < U; j++) {
for (int k = j & j - 1; k; k = j & k - 1) {
int tmp = inf;
if (g[j][k] ^ inf) tmp = g[j][k] * (i - 1);
if (f[i - 1][k] ^ inf) getmin(f[i][j], f[i - 1][k] + tmp);
}
}
getmin(ans, f[i][U - 1]);
}
printf("%d\n", ans);
return 0;
}