第一问最小割,第二问:
设du[i]表示i点的度数,则要最小化$\frac{|1集合的du[i]之和-2集合的du[i]之和|}{2}$,
压位01背包即可。
#include<cstdio>
#include<bitset>
using namespace std;
const int N=40010,inf=~0U>>2;
struct edge{int t,f;edge*nxt,*pair;}*g[N],*d[N],pool[240000],*cur=pool;
int Case,n,m,cnt,i,x,y,S,T,h[N],gap[N],maxflow,du[N],ans;bitset<19910>f;
inline int abs(int x){return x>0?x:-x;}
inline int min(int x,int y){return x<y?x:y;}
inline void add(int s,int t,int f){
edge*p=cur++;p->t=t;p->f=f;p->nxt=g[s];g[s]=p;
p=cur++;p->t=s;p->f=0;p->nxt=g[t];g[t]=p;
g[s]->pair=g[t];g[t]->pair=g[s];
}
int sap(int v,int flow){
if(v==T)return flow;
int rec=0;
for(edge*p=d[v];p;p=p->nxt)if(h[v]==h[p->t]+1&&p->f){
int ret=sap(p->t,min(flow-rec,p->f));
p->f-=ret;p->pair->f+=ret;d[v]=p;
if((rec+=ret)==flow)return flow;
}
if(!(--gap[h[v]]))h[S]=T;
gap[++h[v]]++;d[v]=g[v];
return rec;
}
int main(){
for(scanf("%d",&Case);Case--;printf("%d\n",ans)){
scanf("%d%d",&n,&m),S=n+m+m+1,T=S+1,cnt=n;
for(i=1;i<=m;i++){
scanf("%d%d",&x,&y);
du[x]++,du[y]++;
add(S,++cnt,1),add(++cnt,T,1);
add(cnt-1,x,inf),add(x,cnt,inf);
add(cnt-1,y,inf),add(y,cnt,inf);
}
add(S,1,inf),add(2,T,inf);
for(gap[maxflow=0]=T,i=1;i<=T;i++)d[i]=g[i];
while(h[S]<T)maxflow+=sap(S,inf);
printf("%d ",m*2-maxflow);
for(cur=pool,i=0;i<=T;i++)g[i]=d[i]=NULL,h[i]=gap[i]=0;
for(f.reset(),f[0]=1,i=3;i<=n;i++)f|=f<<du[i];
for(ans=inf,i=0;i<=m;i++)if(f[i])ans=min(ans,abs(du[1]+i-m));
for(i=1;i<=n;i++)du[i]=0;
}
return 0;
}