给你n,K,问你要选出最少几个长度为2的K进制数,才能让所有的n位K进制数删除n-2个元素后,所剩余的长度为2的子序列至少有一个是你所选定的。
如果n>K,那么根据抽屉原理,对于所有n位K进制数,必然会至少有1个数字出现2次或以上,所以00,11,...,K-1 K-1这样的数对是必选的。
对于其他的情况下,我们需要让他构造不出来n位不含重复数字的K进制数。
于是可以把K个数尽可能平均地分成n-1组,每一组内部让他们选出任意两个数都不合法,于是只能组间互相拼,这样他只能构造出最多n-1位的K进制数了。
于是答案就是把K个数尽可能平均地分成n-1组之后,每一组大小为xi,答案就是ΣC(xi,2)。
队友的代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n,k;
scanf("%d%d",&n,&k);
if(n>k)printf("%d\n",k);
else
{
n--;
int m=k/n;
int p=k-m*n;
printf("%d\n",k+(n-p)*(m*(m-1))+(p)*(m*(m+1)));
}
return 0;
}