函数或曲线恒过定点【中阶和高阶辅导】

前言

函数或曲线恒过定点问题,在高中数学中很常见,也很容易被忽视,如果这个隐含条件使用的好,能大大方便我们的解题。

常见情形

①直线\(y=kx+1\)恒过定点\((0,1)\),利用\(k\times 0+1=1\)求得;直线\(y=k(x-1)+3\)恒过定点\((1,3)\),利用\(k\times 0+3=3\)求得;

②函数\(y=2^{x-a}+2\)恒过定点\((a,3)\),利用\(2^{a-a}+2=2^0+2=3\)求得;函数\(y=log_2\;{(x-a)}\)恒过定点\((a+1,0)\),利用\(log_2{[(a+1)-a]}=log_21=0\)求得;

③函数\(y=a\cdot |x|\)恒过定点\((0,0)\);函数\(y=a\cdot x^2\)恒过定点\((0,0)\);注意:函数\(y=a\cdot e^x(a>0)\)不恒过定点\((1,0)\)

④函数\(y=a\cdot x^2+1(a>0)\)恒过定点\((1,0)\)\(a\)的作用会改变抛物线的张角大小。

⑤若函数\(y=f(x-1)+3\)过定点\((2,4)\),则函数\(y=f(x)\)过定点\((1,1)\)

若函数\(y=f(x)\)过定点\((2,4)\),则函数\(y=f(x-1)+3\)过定点\((3,7)\)

⑥函数与导数题型中的恒过定点问题,更值得我们关注,因为这样的函数往往是我们自己主动构造的,等吃力的构造好函数,我们一般也就没有精力注意恒过定点问题了。 1

⑦已知曲线\(F_1(x,y)=0\)\(F_2(x,y)=0\)相交于点\((x_0,y_0)\),则曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\)

证明:

若曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\),则定点坐标由方程组\(\begin{cases}F_1(x,y)=0\\F_2(x,y)=0\end{cases}\)求解得到。

相关链接


    • 比如函数\(g(x)=lnx+1-x\),我们应该看出来\(g(1)=0\)
    • 再比如函数\(g(x)=ln(x-1)+2-x\),我们应该看出来\(g(2)=0\)
    • 再比如已知\(\lambda(x-1)-2lnx \ge 0\)对任意\(x\in(0,1]\)恒成立,若令\(h(x)=\lambda(x-1)-2lnx\),你就应该看出来\(h(1)=0\)
    • 再比如函数\(h(t)=2e^{t-\frac{1}{2}}-\cfrac{1}{t}\),则\(h(\cfrac{1}{2})=0\)
    • 再比如函数\(f(x)=e^{x-1}-lnx-1\),则有\(f(1)=0\)
    • 再比如函数\(f(x)=2x+1+e^{x+1}\),则有\(f(-1)=0\)

转载于:https://www.cnblogs.com/wanghai0666/p/9137942.html

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑远程子站以太网菊花链等。上电写入程序环节,说明了通过USB以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值