函数或曲线恒过定点【中阶和高阶辅导】

前言

函数或曲线恒过定点问题,在高中数学中很常见,也很容易被忽视,如果这个隐含条件使用的好,能大大方便我们的解题。

常见情形

①直线\(y=kx+1\)恒过定点\((0,1)\),利用\(k\times 0+1=1\)求得;直线\(y=k(x-1)+3\)恒过定点\((1,3)\),利用\(k\times 0+3=3\)求得;

②函数\(y=2^{x-a}+2\)恒过定点\((a,3)\),利用\(2^{a-a}+2=2^0+2=3\)求得;函数\(y=log_2\;{(x-a)}\)恒过定点\((a+1,0)\),利用\(log_2{[(a+1)-a]}=log_21=0\)求得;

③函数\(y=a\cdot |x|\)恒过定点\((0,0)\);函数\(y=a\cdot x^2\)恒过定点\((0,0)\);注意:函数\(y=a\cdot e^x(a>0)\)不恒过定点\((1,0)\)

④函数\(y=a\cdot x^2+1(a>0)\)恒过定点\((1,0)\)\(a\)的作用会改变抛物线的张角大小。

⑤若函数\(y=f(x-1)+3\)过定点\((2,4)\),则函数\(y=f(x)\)过定点\((1,1)\)

若函数\(y=f(x)\)过定点\((2,4)\),则函数\(y=f(x-1)+3\)过定点\((3,7)\)

⑥函数与导数题型中的恒过定点问题,更值得我们关注,因为这样的函数往往是我们自己主动构造的,等吃力的构造好函数,我们一般也就没有精力注意恒过定点问题了。 1

⑦已知曲线\(F_1(x,y)=0\)\(F_2(x,y)=0\)相交于点\((x_0,y_0)\),则曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\)

证明:

若曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\),则定点坐标由方程组\(\begin{cases}F_1(x,y)=0\\F_2(x,y)=0\end{cases}\)求解得到。

相关链接


    • 比如函数\(g(x)=lnx+1-x\),我们应该看出来\(g(1)=0\)
    • 再比如函数\(g(x)=ln(x-1)+2-x\),我们应该看出来\(g(2)=0\)
    • 再比如已知\(\lambda(x-1)-2lnx \ge 0\)对任意\(x\in(0,1]\)恒成立,若令\(h(x)=\lambda(x-1)-2lnx\),你就应该看出来\(h(1)=0\)
    • 再比如函数\(h(t)=2e^{t-\frac{1}{2}}-\cfrac{1}{t}\),则\(h(\cfrac{1}{2})=0\)
    • 再比如函数\(f(x)=e^{x-1}-lnx-1\),则有\(f(1)=0\)
    • 再比如函数\(f(x)=2x+1+e^{x+1}\),则有\(f(-1)=0\)

转载于:https://www.cnblogs.com/wanghai0666/p/9137942.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值