前言
函数或曲线恒过定点问题,在高中数学中很常见,也很容易被忽视,如果这个隐含条件使用的好,能大大方便我们的解题。
常见情形
①直线\(y=kx+1\)恒过定点\((0,1)\),利用\(k\times 0+1=1\)求得;直线\(y=k(x-1)+3\)恒过定点\((1,3)\),利用\(k\times 0+3=3\)求得;
②函数\(y=2^{x-a}+2\)恒过定点\((a,3)\),利用\(2^{a-a}+2=2^0+2=3\)求得;函数\(y=log_2\;{(x-a)}\)恒过定点\((a+1,0)\),利用\(log_2{[(a+1)-a]}=log_21=0\)求得;
③函数\(y=a\cdot |x|\)恒过定点\((0,0)\);函数\(y=a\cdot x^2\)恒过定点\((0,0)\);注意:函数\(y=a\cdot e^x(a>0)\)不恒过定点\((1,0)\);
④函数\(y=a\cdot x^2+1(a>0)\)恒过定点\((1,0)\);\(a\)的作用会改变抛物线的张角大小。
⑤若函数\(y=f(x-1)+3\)过定点\((2,4)\),则函数\(y=f(x)\)过定点\((1,1)\);
若函数\(y=f(x)\)过定点\((2,4)\),则函数\(y=f(x-1)+3\)过定点\((3,7)\);
⑥函数与导数题型中的恒过定点问题,更值得我们关注,因为这样的函数往往是我们自己主动构造的,等吃力的构造好函数,我们一般也就没有精力注意恒过定点问题了。 1
⑦已知曲线\(F_1(x,y)=0\),\(F_2(x,y)=0\)相交于点\((x_0,y_0)\),则曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\),
证明:
若曲线\(F_1(x,y)+\lambda F_2(x,y)=0\)必经过点\((x_0,y_0)\),则定点坐标由方程组\(\begin{cases}F_1(x,y)=0\\F_2(x,y)=0\end{cases}\)求解得到。
相关链接
-
- 比如函数\(g(x)=lnx+1-x\),我们应该看出来\(g(1)=0\);
- 再比如函数\(g(x)=ln(x-1)+2-x\),我们应该看出来\(g(2)=0\);
- 再比如已知\(\lambda(x-1)-2lnx \ge 0\)对任意\(x\in(0,1]\)恒成立,若令\(h(x)=\lambda(x-1)-2lnx\),你就应该看出来\(h(1)=0\);
- 再比如函数\(h(t)=2e^{t-\frac{1}{2}}-\cfrac{1}{t}\),则\(h(\cfrac{1}{2})=0\);
- 再比如函数\(f(x)=e^{x-1}-lnx-1\),则有\(f(1)=0\);
- 再比如函数\(f(x)=2x+1+e^{x+1}\),则有\(f(-1)=0\);