SPOJ QTREE5

题意

一棵\(n\)个点的树,点从\(1\)\(n\)编号。每个点可能有两种颜色:黑或白。
我们定义\(dist(a,b)\)为点\(a\)至点\(b\)路径上的边个数。
一开始所有的点都是黑色的。
要求作以下操作:
\(0 i\) 将点\(i\)的颜色反转(黑变白,白变黑)
\(1 v\) 询问\(dist(u,v)\)的最小值,\(u\)\(v\)可以相同,显然如果\(v\)是白点,查询得到的值一定是\(0\)
特别地,如果作\(1\)操作时树上没有白点,输出\(-1\)

Sol

动态点分治+堆
每次从这个点不断向上层重心更新,每个点用堆维护到它最近的白点
查询,暴力向上跳重心,每次取出最近的点求\(lca\),取\(dist\)\(min\)
好像比\(QTREE4\)简单

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5);

IL int Input(){
    RG int x = 0, z = 1; RG char c = getchar();
    for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    return x * z;
}

int n, q, col[_], frt[_], first[_], cnt;
int st[20][_ << 1], lg[_ << 1], deep[_], id[_], len;
int size[_], mx[_], vis[_], rt, num, tot;
struct Edge{
    int to, next;
} edge[_ << 1];
struct Data{
    int u, dis;

    IL int operator <(RG Data B) const{
        return dis > B.dis;
    }
};
priority_queue <Data> Q[_];

IL void Add(RG int u, RG int v){
    edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
}

IL void GetRoot(RG int u, RG int ff){
    size[u] = 1, mx[u] = 0;
    for(RG int e = first[u]; e != -1; e = edge[e].next){
        RG int v = edge[e].to;
        if(vis[v] || v == ff) continue;
        GetRoot(v, u);
        size[u] += size[v];
        mx[u] = max(mx[u], size[v]);
    }
    mx[u] = max(mx[u], num - mx[u]);
    if(mx[u] < mx[rt]) rt = u;
}

IL void Solve(RG int u){
    vis[u] = 1;
    for(RG int e = first[u]; e != -1; e = edge[e].next){
        RG int v = edge[e].to;
        if(vis[v]) continue;
        num = size[v], rt = 0;
        GetRoot(v, u);
        frt[rt] = u, Solve(rt);
    }
}

IL void Dfs(RG int u, RG int ff){
    st[0][++len] = deep[u], id[u] = len;
    for(RG int e = first[u]; e != -1; e = edge[e].next){
        RG int v = edge[e].to;
        if(v == ff) continue;
        deep[v] = deep[u] + 1;
        Dfs(v, u);
        st[0][++len] = deep[u];
    }
}

IL int Dis(RG int u, RG int v){
    RG int dis = deep[u] + deep[v];
    u = id[u], v = id[v];
    if(u > v) swap(u, v);
    RG int lgn = lg[v - u + 1];
    return dis - 2 * min(st[lgn][u], st[lgn][v - (1 << lgn) + 1]);
}

IL int Query(RG int x){
    RG int ans = 2e9;
    for(RG int u = x; u; u = frt[u]){
        while(!Q[u].empty() && !col[Q[u].top().u]) Q[u].pop();
        if(!Q[u].empty()) ans = min(ans, Dis(x, Q[u].top().u));
    }
    return ans;
}

IL void Update(RG int x){
    for(RG int u = x; u; u = frt[u]){
        while(!Q[u].empty() && !col[Q[u].top().u]) Q[u].pop();
        Q[u].push((Data){x, Dis(u, x)});
    }
}

IL void Modify(RG int x){
    if(col[x]) --tot, col[x] ^= 1;
    else ++tot, col[x] ^= 1, Update(x);
}

int main(RG int argc, RG char *argv[]){
    n = Input(), Fill(first, -1), mx[0] = n + 1;
    for(RG int i = 1; i < n; ++i){
        RG int u = Input(), v = Input();
        Add(u, v), Add(v, u);
    }
    Dfs(1, 0);
    for(RG int i = 2; i <= len; ++i) lg[i] = lg[i >> 1] + 1;
    for(RG int j = 1; j <= lg[len]; ++j)
        for(RG int i = 1; i + (1 << j) - 1 <= len; ++i)
            st[j][i] = min(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
    num = n, GetRoot(1, 0), Solve(rt);
    q = Input();
    for(RG int i = 1, x; i <= q; ++i){
        if(Input()) x = Input(), tot ? printf("%d\n", Query(x)) : puts("-1");
        else x = Input(), Modify(x);
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjoieryl/p/8637957.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值