Java消息队列任务的平滑关闭

1.问题背景

对于消息队列的监听,我们一般使用Java写一个独立的程序,在Linux服务器上运行。程序启动后,通过消息队列客户端接收消息,放入一个线程池进行异步处理,并发的快速处理。
那么问题来了,当我们修改程序后,需要重新启动任务的时候,如何保证消息的不丢失呢?
正常来说,订阅者程序关闭后,消息会在发送者队列中堆积,等待订阅者下次订阅消费,所以未接收的消息是不会丢失的。唯一可能丢失的消息,就是在关闭的一瞬间,已经从队列中取出但还没有处理完毕的消息。
因此我们需要一套平滑关闭的机制,保证在重启的时候,消息可以正常处理完成。

2.问题分析

平滑关闭的思路如下:
  • 在关闭程序时,首先关闭消息订阅,这个时候消息都在发送者队列中
  • 关闭本地消息处理线程池(等待本地线程池中的消息处理完毕)
  • 程序退出
关闭消息订阅:一般消息队列的客户端都提供关闭连接的方法,具体可以自行查看api
关闭线程池:Java的ThreadPoolExecutor线程池提供shutdown()和shutdownNow()两个方法,区别是前者会等待线程池中的消息都处理完毕,后者直接停止线程的执行并返回list集合。因为我们需要使用shutdown()方法进行关闭,并通过isTerminated(),方法判断线程池是否已经关闭.
那么问题又来了,我们如何通知到程序,需要执行关闭操作呢?
在Linux中,我们可以用kill -9 pid关闭进程,除了-9之外,我们可以通过 kill -l查看kill 命令的其它信号量,比如使用 12) SIGUSR2 信号量
我们可以在 java程序启动时,注册对应的信号量,对信号量进行监听,在收到对应的kill操作时,执行相关的业务操作。
伪代码如下

//注册linux kill信号量 kill -12
Signal sig = new Signal("USR2");
Signal.handle(sig, new SignalHandler() {
@Override
public void handle(Signal signal) {
//关闭订阅者
//关闭线程池
//退出
}
});

下面通过一个demo模拟相关逻辑操作
首先模拟一个生产者,每秒生产5个消息
然后模拟一个订阅者,收到消息后交给线程池进行处理,线程池固定4个线程,每个消息处理时间1秒,这样线程池每秒会积压1个消息。


package com.lujianing.demo;

import sun.misc.Signal;
import sun.misc.SignalHandler;
import java.util.concurrent.*;

/**
* @author lujianing01@58.com
* @Description:
* @date 2016/11/14
*/
public class MsgClient {

//模拟消息队列订阅者 同时4个线程处理
private static final ThreadPoolExecutor THREAD_POOL = (ThreadPoolExecutor) Executors.newFixedThreadPool(4);
//模拟消息队列生产者
private static final ScheduledExecutorService SCHEDULED_EXECUTOR_SERVICE = Executors.newSingleThreadScheduledExecutor();
//用于判断是否关闭订阅
private static volatile boolean isClose = false;

public static void main(String[] args) throws InterruptedException {
BlockingQueue <String> queue = new ArrayBlockingQueue<String>(100);
producer(queue);
consumer(queue);
}

//模拟消息队列生产者
private static void producer(final BlockingQueue queue){
//每200毫秒向队列中放入一个消息
SCHEDULED_EXECUTOR_SERVICE.scheduleAtFixedRate(new Runnable() {
public void run() {
queue.offer("");
}
}, 0L, 200L, TimeUnit.MILLISECONDS);
}

//模拟消息队列消费者 生产者每秒生产5个 消费者4个线程消费1个1秒 每秒积压1个
private static void consumer(final BlockingQueue queue) throws InterruptedException {
while (!isClose){
getPoolBacklogSize();
//从队列中拿到消息
final String msg = (String)queue.take();
//放入线程池处理
if(!THREAD_POOL.isShutdown()) {
THREAD_POOL.execute(new Runnable() {
public void run() {
try {
//System.out.println(msg);
TimeUnit.MILLISECONDS.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
}
}
}

//查看线程池堆积消息个数
private static long getPoolBacklogSize(){
long backlog = THREAD_POOL.getTaskCount()- THREAD_POOL.getCompletedTaskCount();
System.out.println(String.format("[%s]THREAD_POOL backlog:%s",System.currentTimeMillis(),backlog));
return backlog;
}

static {
String osName = System.getProperty("os.name").toLowerCase();
if(osName != null && osName.indexOf("window") == -1) {
//注册linux kill信号量 kill -12
Signal sig = new Signal("USR2");
Signal.handle(sig, new SignalHandler() {
@Override
public void handle(Signal signal) {
System.out.println("收到kill消息,执行关闭操作");
//关闭订阅消费
isClose = true;
//关闭线程池,等待线程池积压消息处理
THREAD_POOL.shutdown();
//判断线程池是否关闭
while (!THREAD_POOL.isTerminated()) {
try {
//每200毫秒 判断线程池积压数量
getPoolBacklogSize();
TimeUnit.MILLISECONDS.sleep(200L);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("订阅者关闭,线程池处理完毕");
System.exit(0);
}
});
}
}
}

当我们在服务上运行时,通过控制台可以看到相关的输出信息,demo中输出了线程池的积压消息个数
java -cp /home/work/lujianing/msg-queue-client/* com.lujianing.demo.MsgClient


另打开一个终端,通过ps命令查看进程号,或者通过nohup启动Java进程拿到进程id
1

ps -fe|grep MsgClient


当我们执行kill -12 pid的时候 可以看到关闭业务逻辑

3.问题总结

在部门的实际业务中,消息队列的消息量还是挺大的,某些业务高峰时每秒有几百的消息量,因此对消息的处理要保证速度,避免消息积压,也可以通过负载解决单个订阅节点的压力。
在某些业务场景中,对消息的完整性要求不那么高,那么就不用考虑重启时的一点损耗。反之,就需要好好思考和设计了。


补充
ThreadPoolExecutor的getQueue().size()方法,返回的为线程池队列中积压的消息数
getTaskCount() - getCompletedTaskCount(),返回的为线程池队列积压的和正在处理中的消息数


Java中可以通过调用Runtime.getRuntime().addShutdownHook()方法,在Jvm退出时触发回调
kill -15 pid 可以触发调用对应的钩子方法
今天看重启脚本中确实也有 kill -15的命令 但是不知道两者是有关系的

kill -1 pid 和 kill -2 pid 都能触发钩子方法
SIGTERM,SIGINT,SIGHUP三种信号都会触发shutdownhook


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值