第二部分 西格玛×弗洛伊德和描述统计

第二部分的学习是第一部分的一个分支,掌握了第一部分的大框架,对于第二部分的描述统计就得心应手了。

这部分主要致力于:在整理了结果数据之后,如何应用统计学描述结果并更好的理解结果。

上述是目标,工具和方法是:

1.能最好的代表一组数据的集中趋势的测量

2.描述一系列数据点的离散性的标准差和方差

3.处理变量之间的关系的相对关系

这一部分和前面是紧密关联的。

 

集中趋势量数:也叫做平均数,是能够最好的代表一组数据的数值,一般有三种形式:均值,中位数,众数。

均值:是计算平均数最常用的形式,常用M表示。

中位数:一系列数据的中点。

众数:出现次数最多的数值。

何时用什么集中趋势量数?

1.如果数据属性是分类的,而且数值只属于一种类型,例如头发颜色,政治背景,邻里位置和宗教,就是用众数。

2.如果数据中包含极值而且你不想扭曲平均数就是用中位数,例如收入。

3.最后,如果数据不包含极值也不是分类数据就是用均值,例如考试得分或游50码需要的时间。

 

标准差:标准化了的与某个值(均值)的偏差。

方差:标准差的平方。

为什么变异性是有用的描述工具?

变异性量数帮助我们更全面地了解数据点的分布。与集中趋势量数一起,我们可以使用这些数值来区分不同的数据分布,而且有效地描述一组考试分数,身高或个性测量得分的分布。现在我们可以思考和讨论数据分布,也让我们能以不同的方式来考虑这些数据。