三角形的余弦定理

余弦定理:如图,三角形ABC,

则$$\cos B=\frac{|BA|^2+|BC|^2-|AC|^2}{2|BA||BC|}$$

证明余弦定理最初级的方法其实是用射影定理联立方程组.根据射影定理,我们知道

\begin{equation}\label{eq:1}|AB|\cos B+|AC|\cos C=|BC|\end{equation}

同理有

\begin{equation}\label{eq:2}|BC|\cos C+|AB|\cos A=|AC|\end{equation}

\begin{equation}\label{eq:3}|AC|\cos A+|BC|\cos B=|AB|\end{equation}

联立\ref{eq:1},\ref{eq:2},\ref{eq:3},我们发现了一个三元一次的线性方程组,未知数是$\cos A,\cos B,\cos C$,已知数是三条边的长度.将\ref{eq:1}$\times |BC|$-\ref{eq:2}$\times |AC|$可得:

\begin{equation}\label{eq:4}|BC|\cos B-|AC|\cos A=\frac{|BC|^2-|AC|^2}{|AB|}\end{equation}

再联立\ref{eq:3}和\ref{eq:4},容易解得$$\cos B=\frac{|BA|^2+|BC|^2-|AC|^2}{2|BA||BC|}$$

 

注1:勾股定理是余弦定理的特例,不妨设B是直角,则$\cos B=0$,因此此时$|BA|^2+|BC|^2=|AC|^2$.这就是勾股定理.

 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/12/07/3827994.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值