matlab悬链线方程的求解,Matlab建模教程-变分法简介.doc

本文介绍了变分法的基本概念,通过悬链线问题阐述了泛函极值问题。在数学历史上,悬链线问题与最速降线问题紧密相关,涉及贝努利家族的趣闻。文章讨论了如何使用变分法求解悬链线的方程,并给出了泛函极值问题的必要条件,如泛函的变分和欧拉方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab建模教程-变分法简介

§1 变分法简介

作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:

约翰·伯努利(Johann Bernoulli,1667-1748)  这就是著名的“最速降线”问题(The Brachistochrone Problem)Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)Gottfried Wilhelm Leibniz,1646-1716)Isaac Newton1642—1727)Euler Lonhard,1707~1783)Lagrange, Joseph Louis,1736-1813约翰·伯努利(The Hanging Chain Problem)向界求答案固定的端,在重力中它自然垂下,的曲方程是什在大自然中,除了的外,我們可以察到吊上方的索,水珠以及根之所架的,些都是(catenary)。

伽利略(Galileo, 1564~1643)惠更斯(Huygens, 1629~1695)在1646年(17岁),物理的,得知伽利略的猜不,但他求不出答案。约翰·伯努利

解此方程并适当选取参数,得

(1)

即为悬链线。

悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值