topcoder srm 711 div1 -3

1、给出$n,k$,求一个大于等于$n$且最小的数字$m$使得$m$的二进制表示中存在连续$k$个1 。

思路:如果$n$满足,答案就是$n$。否则,依次枚举连续1的位置判断即可。

#include <iostream>
#include <set>
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <string.h>
using namespace std;

class ConsecutiveOnes
{
public:
    long long get(long long n,int k) {

        const int N=50;

        int a[N+5];
        a[0]=0;
        for(int i=1;i<=N;++i)
        {
            a[i]=(n>>(i-1))&1;
            a[i]+=a[i-1];
        }
        for(int i=k;i<=N;++i) if(a[i]-a[i-k]==k) return n;
        long long ans=((n>>k)<<k)|((1ll<<k)-1);
        long long tmp=ans;
        for(int i=k;i<N;++i)
        {
            if((tmp>>(i-k))&1) tmp^=1ll<<(i-k);
            tmp|=1ll<<i;
            if(tmp>=n&&tmp<ans) ans=tmp;
        }
        return ans;
    }
};

  

2、给出一个整数$X=\prod_{i=0}^{n-1}p_{i}^{a_{i}}$,其中$p_{i}$表示第i个素数,比如$p_{0}=2,p_{1}=3$。问有多少有序数列使得数列中每个数字大于1且所有数字的乘积等于$X$。当$X=6$时有三个,分别是{2,3},{3,2},{6}。其中$1\leq n \leq 50,1\leq a_{i} \leq 50$。

思路:令$f_{i}$表示将$X$表示成$i$个数乘积的方案数。那么$f_{i}=\prod_{k=0}^{n-1}g(a_{k},i)-\sum_{k=1}^{i-1}C_{i}^{k}f_{k}$。其中$g(i,j)$表示将$i$个苹果放在$j$个篮子里的方案数,$C_{i}^{j}$表示组合数。

那么答案$ans=\sum f_{i}$

#include <iostream>
#include <map>
#include <string>
#include <stdio.h>
#include <vector>
#include <set>
#include <algorithm>
#include <string.h>
#include <queue>
using namespace std;

const int N=3005;
const int mod=1000000007;

int C[N][N];

int add(int x,int y) {
    x+=y;
    if(x>=mod) x-=mod;
    return x;
}

void init()
{
    C[0][0]=1;
    for(int i=1;i<N;++i) {
        C[i][0]=1;
        for(int j=1;j<N;++j) {
            C[i][j]=add(C[i-1][j],C[i-1][j-1]);
        }
    }
}

int calC(int a,int b) {
    if(a<b) return 0;
    if(b+b>a) b=a-b;
    return C[a][b];
}

int cal1(int a,int b) {
    return calC(a+b-1,b-1);
}

int dp[N];

struct OrderedProduct {
	int count(vector<int> a)
	{
	    init();
	    int s=0;
	    const int n=(int)a.size();
	    for(int i=0;i<n;++i) s+=a[i];
	    int ans=0;
	    for(int i=1;i<=s;++i) {
            dp[i]=1;
            for(int j=0;j<n;++j) dp[i]=(long long)dp[i]*cal1(a[j],i)%mod;
            for(int j=1;j<i;++j) dp[i]=add(dp[i],mod-(long long)calC(i,j)*dp[j]%mod);
            ans=add(ans,dp[i]);
	    }
	    return ans;
	}
};

  

转载于:https://www.cnblogs.com/jianglangcaijin/p/6632050.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值