DIV2 1000pt
题意:在一个长度无限的数轴上移动一个方块,每次可以向左或者向右移动距离x,只要x为完全平方数。数轴上有一些坑,如果方块移动到坑上则方块会掉进坑中,不能再被移动。给整数s,e,和所有坑的位置hol[i],求最少多少步能够将方块从s点移动到e点,若不能从s移动到e,则返回-1。1 <= s, e, hol[i] <= 100000,且他们互不相同。
注意,若s = 1, e = 5, hol[0] = 3,则答案为-1。
解法:首先,从从s移动到e和从e移动到s的需要的步数是一样的,所以可以不妨设s < e。
分为三种情况:存在一个i使得s < hol[i] < e,则答案一定为-1。
若存在一个hol[i] < s和一个hol[j] > e,则将无限的数轴变为有限的,且1 <= hol[i] <= 100000,所以只需要一个建图用BFS做即可。
然后先证明, 如果不存在hol[i] < s存在hol[j] > e,和不存在hol[i] < s且不存在hol[j] > e是等价的情况。这个很容易想明白,比如,从10转化到21,可以10 -> -15 -> 21,也可以10 ->46 -> 21。
所以,剩下最后一种情况等价于,数轴上没有坑。设d = e - s,则无论如何,三步之内一定能从s走到e。
若d为完全平方数,一步即可。
若d = x*x + y*y,则两步即可。(枚举判断)
若d为奇数,则d = 1 * d = (a+b) * (a-b),即a = (d+1)/2,b = (d-1)/2,则a*a - b*b = d,两步即可。
若d为偶数。则如果d为4的倍数,同样可以求出a和b使得d=a*a-b*b,两步即可。若d不为4的倍数,则d = 1 + (d-1),三步即可。
最后这种数轴上没有坑的情况,不能仅通过扩大有限数轴的范围然后用BFS的方法来做,因为范围会大到超时,而且也不容易判断具体范围要扩大到多大。
tag:math, BFS, good
1 // BEGIN CUT HERE 2 /* 3 * Author: plum rain 4 * score : 5 */ 6 /* 7 8 */ 9 // END CUT HERE 10 #line 11 "CubeRoll.cpp" 11 #include <sstream> 12 #include <stdexcept> 13 #include <functional> 14 #include <iomanip> 15 #include <numeric> 16 #include <fstream> 17 #include <cctype> 18 #include <iostream> 19 #include <cstdio> 20 #include <vector> 21 #include <cstring> 22 #include <cmath> 23 #include <algorithm> 24 #include <cstdlib> 25 #include <set> 26 #include <queue> 27 #include <bitset> 28 #include <list> 29 #include <string> 30 #include <utility> 31 #include <map> 32 #include <ctime> 33 #include <stack> 34 35 using namespace std; 36 37 #define CLR(x) memset(x, 0, sizeof(x)) 38 #define CLR1(x) memset(x, -1, sizeof(x)) 39 #define PB push_back 40 #define SZ(v) ((int)(v).size()) 41 #define zero(x) (((x)>0?(x):-(x))<eps) 42 #define out(x) cout<<#x<<":"<<(x)<<endl 43 #define tst(a) cout<<#a<<endl 44 #define CINBEQUICKER std::ios::sync_with_stdio(false) 45 46 typedef vector<int> VI; 47 typedef vector<string> VS; 48 typedef vector<double> VD; 49 typedef long long int64; 50 typedef pair<int, int> pii; 51 52 const double eps = 1e-8; 53 const double PI = atan(1.0)*4; 54 const int maxint = 2139062143; 55 const int maxx = 320; 56 57 bool v[100005]; 58 pii an[100005]; 59 60 bool ok(int a) 61 { 62 int x = sqrt(a + 0.0); 63 if ((x-1)*(x-1) == a) return 1; 64 if (x * x == a) return 1; 65 if ((x+1)*(x+1) == a) return 1; 66 return 0; 67 } 68 69 int BFS (int l, int r, int s, int e) 70 { 71 CLR (v); 72 v[s] = 1; 73 int il = 0, ir = 0; 74 pii t; t.second = 1; 75 for (int i = 1; i < maxx; ++ i){ 76 if (s + i*i < r){ 77 v[s+i*i] = 1; 78 t.first = s + i*i; an[ir++] = t; 79 continue; 80 } 81 else break; 82 } 83 for (int i = 1; i < maxx; ++ i){ 84 if (s - i*i > l){ 85 v[s - i*i] = 1; 86 t.first = s - i*i; an[ir++] = t; 87 } 88 else break; 89 } 90 91 while (il < ir){ 92 pii tmp = an[il++]; 93 if (tmp.first == e) return tmp.second; 94 95 pii t1 = tmp; ++ t1.second; 96 for (int i = 1; i < maxx; ++ i){ 97 if (!v[tmp.first+i*i] && tmp.first + i*i < r){ 98 t1.first = tmp.first + i*i; an[ir++] = t1; 99 v[t1.first] = 1; 100 } 101 if (tmp.first + i*i >= r) break; 102 } 103 for (int i = 1; i < maxx; ++ i){ 104 if (!v[tmp.first-i*i] && tmp.first - i*i > l){ 105 t1.first = tmp.first - i*i; an[ir++] = t1; 106 v[t1.first] = 1; 107 } 108 if (tmp.first - i*i <= l) break; 109 } 110 } 111 return -1; 112 } 113 114 int gao(int d) 115 { 116 for (int i = 1; i < maxx; ++ i) 117 for (int j = 1; j < maxx; ++ j) 118 if (i*i + j*j == d) return 2; 119 return 3; 120 } 121 122 class CubeRoll 123 { 124 public: 125 int getMinimumSteps(int s, int e, vector <int> hol){ 126 if (s > e) swap(s, e); 127 bool tt = 0; 128 int n = hol.size(), l = 0, r = 100005; 129 for (int i = 0; i < n; ++ i){ 130 if (hol[i] < s) l = max(l, hol[i]); 131 if (hol[i] > e) r = min(r, hol[i]); 132 if (s < hol[i] && hol[i] < e) tt = 1; 133 } 134 135 if (tt) return -1; 136 if (l && r != 100005) return BFS(l, r, s, e); 137 138 int d = e - s; 139 if (ok(d)) return 1; 140 if (d & 1 || !(d % 4)) return 2; 141 return gao(d); 142 } 143 144 // BEGIN CUT HERE 145 public: 146 void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); if ((Case == -1) || (Case == 3)) test_case_3(); if ((Case == -1) || (Case == 4)) test_case_4(); } 147 private: 148 template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); } 149 void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } } 150 void test_case_0() { int Arg0 = 5; int Arg1 = 1; int Arr2[] = {3}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = -1; verify_case(0, Arg3, getMinimumSteps(Arg0, Arg1, Arg2)); } 151 void test_case_1() { int Arg0 = 36; int Arg1 = 72; int Arr2[] = {300, 100, 200, 400}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 1; verify_case(1, Arg3, getMinimumSteps(Arg0, Arg1, Arg2)); } 152 void test_case_2() { int Arg0 = 10; int Arg1 = 21; int Arr2[] = {38,45}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 2; verify_case(2, Arg3, getMinimumSteps(Arg0, Arg1, Arg2)); } 153 void test_case_3() { int Arg0 = 98765; int Arg1 = 4963; int Arr2[] = {10,20,40,30}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 2; verify_case(3, Arg3, getMinimumSteps(Arg0, Arg1, Arg2)); } 154 void test_case_4() { int Arg0 = 68332; int Arg1 = 825; int Arr2[] = {99726,371,67,89210}; vector <int> Arg2(Arr2, Arr2 + (sizeof(Arr2) / sizeof(Arr2[0]))); int Arg3 = 2; verify_case(4, Arg3, getMinimumSteps(Arg0, Arg1, Arg2)); } 155 156 // END CUT HERE 157 158 }; 159 160 // BEGIN CUT HERE 161 int main() 162 { 163 // freopen( "a.out" , "w" , stdout ); 164 CubeRoll ___test; 165 ___test.run_test(-1); 166 return 0; 167 } 168 // END CUT HERE