HDU 1281
由于每行最多放一个,每列最多放一个(不能放置的位置不影响攻击,就是由于没注意这句话,把这题当做行列覆盖模型做了好久0.0)
所以把行列直接当做二分图X和Y集。能够放置的点的行列连边,求出的完备匹配就是第二个答案。
至于第一个答案求关键点,就枚举删除一条边是否能任然得到完备匹配,若不行,则是关键点。
我的代码c++会WA,不知道为什么。求教啊。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int mp[105][105];
int to[105];
bool vis[105];
int n;
int dfs(int k)
{
for(int i=1;i<=n;i++)
{
if(!vis[i]&&mp[k][i])
{
vis[i]=1;
if(to[i]==-1||dfs(to[i]))
{
to[i]=k;
return 1;
}
}
}
return 0;
}
int a[100090],b[100900];
int main()
{
int m,k,ca=1;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
memset(mp,0,sizeof(mp));
for(int i=1;i<=k;i++)
{
scanf("%d%d",&a[i],&b[i]);
mp[a[i]][b[i]]=1;
}
int ans=0;
memset(to,-1,sizeof(to));
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
ans+=dfs(i);
}
int ans2=0,tot=0;
for(int i=1;i<=k;i++)
{
ans2=0;
mp[a[i]][b[i]]=0;
memset(to,-1,sizeof(to));
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
ans2+=dfs(i);
}
if(ans2!=ans) tot++;
mp[a[i]][b[i]]=1;
}
printf("Board %d have %d important blanks for %d chessmen.\n",ca++,tot,ans);
}
return 0;
}
POJ 2062
第一个人按顺序出牌,第二个人又一次排列后出牌,求最多得分。
非常easy想到的二分图匹配,建图时写个函数比較一下牌的大小就够了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int mp[105][105];
int to[555];
bool vis[555];
char s[10];
char h[500];
int n;
int dfs(int k)
{
for(int i=0;i<n;i++)
{
if(!vis[i]&&mp[k][i])
{
vis[i]=1;
if(to[i]==-1||dfs(to[i]))
{
to[i]=k;
return 1;
}
}
}
return 0;
}
bool cmp(char *sa,char *sb)
{
if(h[sa[0]]==h[sb[0]]) return h[sa[1]]>h[sb[1]];
return h[sa[0]]>h[sb[0]];
}
char sa[105][5],sb[105][5];
int main()
{
h['H']=3;
h['S']=2;
h['D']=1;
h['C']=0;
for(int i='2';i<='9';i++) h[i]=i-'2';
h['T']=8;
h['J']=9;
h['Q']=10;
h['K']=11;
h['A']=12;
int cas;
scanf("%d",&cas);
while(cas--)
{
memset(mp,0,sizeof(mp));
memset(to,-1,sizeof(to));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%s",sa[i]);
}
for(int i=0;i<n;i++)
{
scanf("%s",sb[i]);
}
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(cmp(sb[j],sa[i])) mp[j][i]=1;
}
}
int ans=0;
for(int i=0;i<n;i++)
{
memset(vis,0,sizeof(vis));
ans+=dfs(i);
}
printf("%d\n",ans);
}
return 0;
}
HDU 2119
行列分为二分图。若相交位置有1则连一条容量为INF的边。其它边容量为1,最小割就是消除全部1的解
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<string>
#define eps 1e-12
#define INF 0x7fffffff
#define maxn 22222
using namespace std;
int n,m;
int en;
int st,ed; //源点和汇点
int dis[maxn] ;//dis[i],表示 到 原点 s 的 层数
int que[9999999];
struct edge
{
int to,c,next;
};
edge e[9999999];
int head[maxn];
void add(int a,int b,int c)
{
e[en].to=b;
e[en].c=c;
e[en].next=head[a];
head[a]=en++;
e[en].to=a;
e[en].c=0;
e[en].next=head[b];
head[b]=en++;
}
int bfs()
{
memset(dis,-1,sizeof(dis));
dis[st]=0;
int front=0,rear=0;
que[rear++]=st;
while(front<rear)
{
int j=que[front++];
for(int k=head[j];k!=-1;k=e[k].next)
{
int i=e[k].to;
if(dis[i]==-1&&e[k].c)
{
dis[i] = dis[j]+ 1 ;
que[rear++]=i;
if(i==ed) return true;
}
}
}
return false;
}
int dfs(int x,int mx)
{
int i,a;
if(x==ed) return mx ;
int ret=0;
for(int k=head[x];k!=-1&&ret<mx;k=e[k].next)
{
if(e[k].c&&dis[e[k].to]==dis[x]+1)
{
int dd=dfs(e[k].to,min(e[k].c,mx-ret));
e[k].c-=dd;
e[k^1].c+=dd;
ret+=dd;
}
}
if(!ret) dis[x]=-1;
return ret;
}
void init()
{
en=0;
st=0; //源
ed=n+m+10; //汇
memset(head,-1,sizeof(head));
}
void build()
{
int x,y,z;
for(int i=1;i<=n;i++) add(st,i,1);
for(int j=1;j<=m;j++) add(j+n,ed,1);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
if(x==1) add(i,j+n,INF);
}
}
}
int dinic()
{
int tmp=0;
int maxflow=0;
while(bfs())
{
while(tmp=dfs(st,INF)) maxflow+=tmp;
}
return maxflow;
}
int main()
{
while(scanf("%d",&n)&&n)
{
scanf("%d",&m);
init();
build();
printf("%d\n",dinic());
}
}