Caffe版Faster R-CNN可视化——网络模型,图像特征,Loss图,PR曲线

可视化网络模型

  Caffe目前有两种常用的可视化模型方式:

  • 使用Netscope在线可视化
  • Caffe代码包内置的draw_net.py文件可以可视化网络模型

Netscope

  Netscope能可视化神经网络体系结构(或技术上说,Netscope能可视化任何有向无环图)。目前Netscope能可视化Caffe的prototxt 文件。网址为: ethereon.github.io/netscope/#/…   Netscope的使用非常简单,只需要将prototxt的文件复制到Netscope的编辑框,再按快捷键Shift+Enter即可得到网络模型的可视化结构。Netscope的优点是显示的网络模型简洁,而且将鼠标放在右侧可视化的网络模型的任意模块上,会显示该模块的具体参数。图1以Faster R-CNN中ZF模型的train.prototxt文件为例

图1 Netscope可视化ZF网络模

draw_net.py

  draw_net.py同样是将prototxt绘制成网络模型,在绘制之前,需要安装两个依赖库:

1、安装GraphViz   # sudo apt-get install GraphViz   注意,这里用的是apt-get来安装,而不是pip.   2 、安装pydot   # sudo pip install pydot   用的是pip来安装,而不是apt-get

  安装完毕后,即可调用draw_net.py绘制网络模型,如绘制caffe自带的LeNet网络模型:

sudo python python/draw_net.py examples/mnist/lenet_train_test.prototxt netImage/lenet.png --rankdir=TB
复制代码

  其中有三个参数,各自的含义为:

第一个参数:网络模型的prototxt文件 第二个参数:保存的图片路径及名字 第二个参数:–rankdir=x , x 有四种选项,分别是LR, RL, TB, BT 。用来表示网络的方向,分别是从左到右,从右到左,从上到小,从下到上。默认为LR。

  可视化结果如下图所示:

图2 draw_net.py可视化LeNet网络模型

可视化图像特征

  关于图像的可视化,我也使用过两种两种方式:

  • 修改demo.py代码输出中间层结果
  • 使用可视化工具deep-visualization-toolbox

修改demo.py

  该部分是参考薛开宇的《caffe学习笔记》中的逐层特征可视化部分,还是以ZFNet网络训练Pascal VOC为例,修改demo.py文件后,代码如下:

#!/usr/bin/env python
#-*-coding:utf-8-*-


import matplotlib
matplotlib.use('Agg')
import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse

CLASSES = ('__background__',
           'aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
           'cow', 'diningtable', 'dog', 'horse',
           'motorbike', 'person', 'pottedplant',
           'sheep', 'sofa', 'train', 'tvmonitor')

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'zf_faster_rcnn_iter_2000.caffemodel')}

def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()

def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [zf]',
                        choices=NETS.keys(), default='zf')

    args = parser.parse_args()

    return args





if __name__ == '__main__':

    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()
    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)
	#指定caffe路径,以下是我的caffe路径 
    caffe_root='/home/ouyang/GitRepository/py-faster-rcnn/caffe-fast-rcnn/'
    # import sys
    sys.path.insert(0, caffe_root+'python')
    # import caffe

    # #显示的图表大小为 10,图形的插值是以最近为原则,图像颜色是灰色
    plt.rcParams['figure.figsize'] = (10, 10)
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    image_file = caffe_root+'examples/images/vehicle_0000015.jpg'  
    # 载入模型
    npload = caffe_root+ 'python/caffe/imagenet/ilsvrc_2012_mean.npy'  
    
    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    transformer.set_transpose('data', (2,0,1))
    transformer.set_mean('data', np.load(npload).mean(1).mean(1))
    # 参考模型的灰度为0~255,而不是0~1
    transformer.set_raw_scale('data', 255) 
    # 由于参考模型色彩是BGR,需要将其转换为RGB
    transformer.set_channel_swap('data', (2,1,0))
    im=caffe.io.load_image(image_file)
    net.blobs['data'].reshape(1,3,224,224)
    net.blobs['data'].data[...] = transformer.preprocess('data',im)
    # 显示出各层的参数和形状,第一个是批次,第二个是feature map数目,第三和第四是每个神经元中图片的长和宽
    print [(k,v.data.shape) for k,v in net.blobs.items()]
    #输出网络参数
    print [(k,v[0].data.shape) for k,v in net.params.items()]


   
    def show_image(im):
        if im.ndim==3:
            m=im[:,:,::-1]
        plt.imshow(im)
        #显示图片的方法
        plt.axis('off') # 不显示坐标轴
        plt.show()    

    # 每个可视化的都是在一个由一个个网格组成
    def vis_square(data,padsize=1,padval=0):
        data-=data.min()
        data/=data.max()
        
        # force the number of filters to be square
        n=int(np.ceil(np.sqrt(data.shape[0])))
        padding=((0,n**2-data.shape[0]),(0,padsize),(0,padsize))+((0,0),)*(data.ndim-3)
        data=np.pad(data,padding,mode='constant',constant_values=(padval,padval))
        # 对图像使用滤波器
        
        data=data.reshape((n,n)+data.shape[1:]).transpose((0,2,1,3)+tuple(range( 4,data.ndim+1)))
        data=data.reshape((n*data.shape[1],n*data.shape[3])+data.shape[4:])   
        
        #show_image(data)
        plt.imshow(data)
        plt.show()
        # 设置图片的保存路径,此处是我的路径
        plt.savefig("./tools/Vehicle_2000/fc6.jpg")

    
    out = net.forward()
    image=net.blobs['data'].data[4].copy()
    image-=image.min()
    image/=image.max()
    # 显示原始图像
    show_image(image.transpose(1,2,0))
    #网络提取conv1的卷积核
    filters = net.params['conv1'][0].data
    vis_square(filters.transpose(0, 2, 3, 1))
    #过滤后的输出,96 张 featuremap
    feat =net.blobs['conv1'].data[0,:96]
    vis_square(feat,padval=1)
    #第二个卷积层,显示全部的96个滤波器,每一个滤波器为一行。
    filters = net.params['conv2'][0].data
    vis_square(filters[:96].reshape(96**2, 5, 5))
    # #第二层输出 256 张 featuremap
    feat = net.blobs['conv2'].data[0]
    vis_square(feat, padval=1)


    filters = net.params['conv3'][0].data
    vis_square(filters[:256].reshape(256**2, 3, 3))


    # 第三个卷积层:全部 384 个 feature map
    feat = net.blobs['conv3'].data[0]
    vis_square(feat, padval=0.5)


    #第四个卷积层,我们只显示前面 48 个滤波器,每一个滤波器为一行。
    filters = net.params['conv4'][0].data
    vis_square(filters[:384].reshape(384**2, 3, 3))

    # 第四个卷积层:全部 384 个 feature map
    feat = net.blobs['conv4'].data[0]
    vis_square(feat, padval=0.5)
    # 第五个卷积层:全部 256 个 feature map
    filters = net.params['conv5'][0].data
    vis_square(filters[:384].reshape(384**2, 3, 3))

    feat = net.blobs['conv5'].data[0]
    vis_square(feat, padval=0.5)
    #第五个 pooling 层
    feat = net.blobs['fc6'].data[0]
    vis_square(feat, padval=1)
    第六层输出后的直方分布
    feat=net.blobs['fc6'].data[0]
    plt.subplot(2,1,1)
    plt.plot(feat.flat)
    plt.subplot(2,1,2)
    _=plt.hist(feat.flat[feat.flat>0],bins=100)
    # #显示图片的方法
    #plt.axis('off') # 不显示坐标轴
    plt.show()  
    plt.savefig("fc6_zhifangtu.jpg") 
    # 第七层输出后的直方分布
    feat=net.blobs['fc7'].data[0]
    plt.subplot(2,1,1)
    plt.plot(feat.flat)
    plt.subplot(2,1,2)
    _=plt.hist(feat.flat[feat.flat>0],bins=100)
    plt.show()
    plt.savefig("fc7_zhifangtu.jpg") 
    #看标签
    #执行测试  
    image_labels_filename=caffe_root+'data/ilsvrc12/synset_words.txt'
    #try:
    labels=np.loadtxt(image_labels_filename,str,delimiter='\t')
    top_k=net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
    #print labels[top_k]
    for i in np.arange(top_k.size):
        print top_k[i], labels[top_k[i]]
复制代码

  下面贴几张检测结果

图3 原始检测图片

图4 conv1参数可视化

图5 conv1特征可视化

deep-visualization-toolbox

  deep-visualization-toolbox是Jason Yosinsk出版在Computer Science上的一篇论文的源代码,改论文主要讲述的是卷积神经网络的可视化,感兴趣的朋友可以看看这篇论文(论文地址)。B站上有个讲怎么使用该工具的视频,这里附上链接www.bilibili.com/video/av740…。   该工具的源码在github:github.com/yosinski/de…。该github下有完整的安装配置步骤,还是以图2中的马为例,贴几张检测结果图。

图6 ToolBox conv1特征可视化

图7 ToolBox conv2特征可视化

  从检测效果上看,还是挺简洁的。图片左侧的一列图片左上角是输入图片,中间部分是图片经过网络前向传播得到的特征图可视化,左下角是其特征可视化。

Loss可视化

  网络训练过程中Loss值的可视化可以帮助分析该网络模型的参数是否合适。在使用Faster R-CNN网络训练模型时,训练完成后的日志文件中保存了网络训练各个阶段的loss值,如图8所示。只用写简单的python程序,读取日志文件中的迭代次数,以及需要的损失值,再画图即可完成Loss的可视化。

图8 模型的训练日志
  在下面贴出Loss可视化的代码:
#!/usr/bin/env python  
import os  
import sys  
import numpy as np  
import matplotlib.pyplot as plt  
import math  
import re  
import pylab  
from pylab import figure, show, legend  
from mpl_toolkits.axes_grid1 import host_subplot  
  
# 日志文件名
fp = open('faster_rcnn_end2end_ZF_.txt.2018-04-13_19-46-23', 'r',encoding='UTF-8') 

  
train_iterations = []  
train_loss = []  
test_iterations = []  
#test_accuracy = []  
  
for ln in fp:  
  # get train_iterations and train_loss  
  if '] Iteration ' in ln and 'loss = ' in ln:  
    arr = re.findall(r'ion \b\d+\b,',ln)  
    train_iterations.append(int(arr[0].strip(',')[4:]))  
    train_loss.append(float(ln.strip().split(' = ')[-1]))  
      
fp.close()  
  
host = host_subplot(111)  
plt.subplots_adjust(right=0.8) # ajust the right boundary of the plot window  
#par1 = host.twinx()  
# set labels  
host.set_xlabel("iterations")  
host.set_ylabel("RPN loss")  
#par1.set_ylabel("validation accuracy")  
  
# plot curves  
p1, = host.plot(train_iterations, train_loss, label="train RPN loss")  
.  
host.legend(loc=1)  
  
# set label color  
host.axis["left"].label.set_color(p1.get_color())  
host.set_xlim([-1000, 60000])  
host.set_ylim([0., 3.5])  
  
plt.draw()  
plt.show()  
复制代码

  可视化效果如下图所示

图9 Loss可视化

画PR图

  Faster R-CNN训练网络在输出网络模型的同级文件夹里有每一类检测目标每张图片的准确率和召回率,可以绘制准确率召回率(Precision-recall, PR)曲线,PR曲线的面积即准确率的值。   该文件存储在==output\faster_rcnn_end2end\voc_2007_test\zf_faster_rcnn_iter==下的.pkl文件下,需要将其转换为.txt文件。代码如下:

#-*-coding:utf-8-*-
import cPickle as pickle
import numpy as np 
np.set_printoptions(threshold=np.NaN) 
fr = open('./aeroplane_pr.pkl')    #open的参数是pkl文件的路径
inf = pickle.load(fr)       #读取pkl文件的内容
print inf
fo = open("aeroplane_pr.txt", "wb")
fo.write(str(inf))
fo.close()
fr.close()                       #关闭文件
复制代码

  执行完这个程序后,会将.pkl文件转换为.txt文件保存。.txt文件能直观看到每张图片的检测准确率与召回率。用与画loss图相似的方法,即可完成PR曲线的绘制。效果图如图10所示。

图10 PR曲线

参考文献

[1] 薛开宇,caffe学习笔记

[2] Yosinski J, Clune J, Nguyen A, et al. Understanding Neural Networks Through Deep Visualization[J]. Computer Science, 2015.

转载于:https://juejin.im/post/5ae2a7b3f265da0b9f40011a

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Visdom是一个基于Python可视化工具,可以用来实时监测模型的训练过程,并对训练过程中的损失函数(loss)和准确率(accuracy)进行可视化展示。 以下是一个使用Visdom可视化损失函数和准确率的示例代码: ```python import visdom import numpy as np # 创建Visdom客户端 viz = visdom.Visdom() # 定义损失函数和准确率的窗口名称 loss_win = 'Loss' acc_win = 'Accuracy' # 初始化损失函数和准确率的数据 loss = np.zeros(1) acc = np.zeros(1) # 可视化损失函数和准确率 viz.line(X=np.array([0]), Y=np.array([loss[0]]), win=loss_win, update='replace') viz.line(X=np.array([0]), Y=np.array([acc[0]]), win=acc_win, update='replace') # 开始训练 for epoch in range(num_epochs): # 计算损失函数和准确率 loss = compute_loss() acc = compute_accuracy() # 更新可视化数据 viz.line(X=np.array([epoch]), Y=np.array([loss]), win=loss_win, update='append') viz.line(X=np.array([epoch]), Y=np.array([acc]), win=acc_win, update='append') ``` 在上述示例代码中,我们首先创建了一个Visdom客户端,然后定义了损失函数和准确率的窗口名称。接着,我们初始化了损失函数和准确率的数据,并使用`viz.line`函数将它们可视化展示出来。 在训练过程中,我们每个epoch都会计算损失函数和准确率,并使用`viz.line`函数更新可视化数据。最后,训练完成后,我们可以在Visdom客户端中查看损失函数和准确率随着训练过程的变化情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值