Calcite源码解析:1.SQL执行流程

5501600-869f39bae341c05c.png

大概流程

一段对SQL执行完整的一套代码。分为四个步骤:
总结来说Calcite有以下主要功能:

  1. SQL 解析
  2. SQL 校验
  3. 查询优化
  4. SQL 生成器
  5. 数据连接
    Calcite 解析SQl的步骤:


    5501600-aa434517d95f3131.png
    Calcite 解析步骤

    如上图中所述,一般来说Calcite解析SQL有以下几步:

  • Parser. 此步中Calcite通过Java CC将SQL解析成未经校验的AST
  • Validate. 该步骤主要作用是校证Parser步骤中的AST是否合法,如验证SQL scheme、字段、函数等是否存在; SQL语句是否合法等. 此步完成之后就生成了RelNode树(关于RelNode树, 请参考下文)
  • Optimize. 该步骤主要的作用优化RelNode树, 并将其转化成物理执行计划。主要涉及SQL规则优化如:基于规则优化(RBO)及基于代价(CBO)优化; Optimze 这一步原则上来说是可选的, 通过Validate后的RelNode树已经可以直接转化物理执行计划,但现代的SQL解析器基本上都包括有这一步,目的是优化SQL执行计划。此步得到的结果为物理执行计划。
  • Execute,即执行阶段。此阶段主要做的是:将物理执行计划转化成可在特定的平台执行的程序。如Hive与Flink都在在此阶段将物理执行计划CodeGen生成相应的可执行代码。

Calcite相关组件

Calcite主要有以下概念:

  • Catalog: 主要定义SQL语义相关的元数据与命名空间。
  • SQL parser: 主要是把SQL转化成AST.
  • SQL validator: 通过Catalog来校证AST.
  • Query optimizer: 将AST转化成物理执行计划、优化物理执行计划.
  • SQL generator: 反向将物理执行计划转化成SQL语句.

Convert query to SqlNode

public class Test {

    public static void main(String[] args) throws SqlParseException {

        // Convert query to SqlNode
        String sql = "select price from transactions";
        //构建config,有默认的构造也有带参数的config   返回ConfigImpl   有默认的实现
        Config config = SqlParser.configBuilder().build();
        //根据config构建sql解析器   reader是SourceStringReader,String流
        SqlParser parser = SqlParser.create(sql, config);
        //构建parse tree
        SqlNode node = parser.parseQuery();
    }
}
上述代码流程:

调用SqlParser将SQL语句生成SQL Tree。这部分是Java CC基于Parser.jj文件模板来实现的,输出为SqlNode的Tree。

详细分解
/** Implementation of
   * {@link Config}.
   * Called by builder; all values are in private final fields. */
  private static class ConfigImpl implements Config {
    private final int identifierMaxLength; //最大长度标识
    private final boolean caseSensitive;
    //有效SQL兼容模式的枚举
    private final SqlConformance conformance;
    private final Casing quotedCasing;  //Casing是枚举类型,大小写,未改变
    private final Casing unquotedCasing;
    private final Quoting quoting;  //引用
    private final SqlParserImplFactory parserFactory;  //
    //私有构造函数
    private ConfigImpl(int identifierMaxLength, Casing quotedCasing,
        Casing unquotedCasing, Quoting quoting, boolean caseSensitive,
        SqlConformance conformance, SqlParserImplFactory parserFactory) {
      this.identifierMaxLength = identifierMaxLength;
      this.caseSensitive = caseSensitive;
      this.conformance = Objects.requireNonNull(conformance);
      this.quotedCasing = Objects.requireNonNull(quotedCasing);
      this.unquotedCasing = Objects.requireNonNull(unquotedCasing);
      this.quoting = Objects.requireNonNull(quoting);
      this.parserFactory = Objects.requireNonNull(parserFactory);
    }

追溯Config,有默认的ConfigImpl实现,ConfigImpl是SqlParser的内部类,通过builder来构建。ConfigBuilder里边都有默认的Config配置。

/** Builder for a {@link Config}. */
  public static class ConfigBuilder {
    private Casing quotedCasing = Lex.ORACLE.quotedCasing;
    private Casing unquotedCasing = Lex.ORACLE.unquotedCasing;
    private Quoting quoting = Lex.ORACLE.quoting;
    private int identifierMaxLength = DEFAULT_IDENTIFIER_MAX_LENGTH;
    private boolean caseSensitive = Lex.ORACLE.caseSensitive;
    private SqlConformance conformance = SqlConformanceEnum.DEFAULT;
    private SqlParserImplFactory parserFactory = SqlParserImpl.FACTORY;

在这里讲一下SqlParserImplFactory

public interface SqlParserImplFactory {

  /**
   * Get the underlying parser implementation.
   *
   * @return {@link SqlAbstractParserImpl} object.
   */
  SqlAbstractParserImpl getParser(Reader stream);
}

SqlAbstractParserImpl的代理,Parse的代理,这里可以自定义Parse的实现
接下来是生成SQLParser

public static SqlParser create(Reader reader, Config config) {
    SqlAbstractParserImpl parser =
            //config里边得到Factory
        config.parserFactory().getParser(reader);

    return new SqlParser(parser, config);
  }

SqlParserImplFactory.java
/**
   * Get the underlying parser implementation.
   *
   * @return {@link SqlAbstractParserImpl} object.
   */
  SqlAbstractParserImpl getParser(Reader stream);

这里会返回SqlAbstractParserImpl具体的实现类。
然后

//解析select语句
public SqlNode parseQuery() throws SqlParseException {
      return parser.parseSqlStmtEof();
    //略过     
}

构建parse tree SqlNode即为生成的AST的根节点,代表了整个抽象语法树。
我们来看看Parser.jj的具体的解析过程源码:
在SqlParserImpl.java。读Parser.jj stream的形式读取。SQL解析器,由JavaCC从Parser.jj生成。

/**
 * Parses an SQL statement followed by the end-of-file symbol.
 * 解析SQL语句,后跟文件结束符号。
 */
  final public SqlNode SqlStmtEof() throws ParseException {
    SqlNode stmt;
    stmt = SqlStmt();
    jj_consume_token(0);
        {if (true) return stmt;}
    throw new Error("Missing return statement in function");
  }

接着来看:
SqlStmt();这里会有具体的解析过程,读者可以自行阅读相应源码。代码最终会生成SqlNode

/**
 * Parses an SQL statement.
 * 解析SQL语句。
 */
  final public SqlNode SqlStmt() throws ParseException {
    SqlNode stmt;
    if (jj_2_34(2)) {
      stmt = SqlSetOption(Span.of(), null);
    } else if (jj_2_35(2)) {
      stmt = SqlAlter();
    } else if (jj_2_36(2)) {
      stmt = OrderedQueryOrExpr(ExprContext.ACCEPT_QUERY);
    } else if (jj_2_37(2)) {
      stmt = SqlExplain();
    } else if (jj_2_38(2)) {
      stmt = SqlDescribe();
    } else if (jj_2_39(2)) {
      stmt = SqlInsert();
    } else if (jj_2_40(2)) {
      stmt = SqlDelete();
    } else if (jj_2_41(2)) {
      stmt = SqlUpdate();
    } else if (jj_2_42(2)) {
      stmt = SqlMerge();
    } else if (jj_2_43(2)) {
      stmt = SqlProcedureCall();
    } else {
      jj_consume_token(-1);
      throw new ParseException();
    }
        {if (true) return stmt;}
    throw new Error("Missing return statement in function");
  }

Convert SqlNode to RelNode

        //VolcanoPlanner会根据动态算法优化查询   cost factory
        VolcanoPlanner planner = new VolcanoPlanner();
        //行表达式代理   一些常见的字符值会被缓存
        RexBuilder rexBuilder = createRexBuilder();
        //优化查询期间的环境     RelOptPlanner会把相关的表达式转换成语义上的表达式
        RelOptCluster cluster = RelOptCluster.create(planner, rexBuilder);
        //创建converter
        SqlToRelConverter converter = new SqlToRelConverter(...);
        //通常root为tree的根节点
        RelRoot root = converter.convertQuery(node, false, true);
上述代码流程

SqlToRelConverter将SQL Tree转化为Calcite中的RelNode。虽然两种Node都是类似于Tree的形式,但是表示的含义不同。SqlNode有很多种,既包括MIN、MAX这种表达式型的,也包括SELECT、JOIN这种关系型的,转化过程中,将这两种分离成RelNode关系型和RexNode表达式型。

详细分解

VolcanoPlanner.java

/**
   * Creates a {@code VolcanoPlanner} with a given cost factory.
   */
  public VolcanoPlanner(RelOptCostFactory costFactory, //
      Context externalContext) {
    super(costFactory == null ? VolcanoCost.FACTORY : costFactory, //
        externalContext);
    this.zeroCost = this.costFactory.makeZeroCost();
  }

RexBuilder.java
行表达式代理 一些常见的字符值会被缓存 (NULL, TRUE, FALSE, 0, 1, '') are cached

public RexBuilder(RelDataTypeFactory typeFactory) {
    this.typeFactory = typeFactory;
    this.booleanTrue =
        makeLiteral(
            Boolean.TRUE,
            typeFactory.createSqlType(SqlTypeName.BOOLEAN),
            SqlTypeName.BOOLEAN);
    this.booleanFalse =
        makeLiteral(
            Boolean.FALSE,
            typeFactory.createSqlType(SqlTypeName.BOOLEAN),
            SqlTypeName.BOOLEAN);
    this.charEmpty =
        makeLiteral(
            new NlsString("", null, null),
            typeFactory.createSqlType(SqlTypeName.CHAR, 0),
            SqlTypeName.CHAR);
    this.constantNull =
        makeLiteral(
            null,
            typeFactory.createSqlType(SqlTypeName.NULL),
            SqlTypeName.NULL);
  }

基本都是对于一些常量的初始化。没有多说的。
RelOptCluster.java
优化查询期间的环境 RelOptPlanner会把相关的表达式转换成语义上的表达式

RelOptCluster(RelOptPlanner planner, RelDataTypeFactory typeFactory,
      RexBuilder rexBuilder, AtomicInteger nextCorrel,
      Map<String, RelNode> mapCorrelToRel) {
    this.nextCorrel = nextCorrel;
    this.mapCorrelToRel = mapCorrelToRel;
    this.planner = Objects.requireNonNull(planner);
    this.typeFactory = Objects.requireNonNull(typeFactory);
    this.rexBuilder = rexBuilder;
    this.originalExpression = rexBuilder.makeLiteral("?");

    // set up a default rel metadata provider,
    // giving the planner first crack at everything
    //元数据    它提供了标准逻辑代数的一般公式和推导规则
    setMetadataProvider(DefaultRelMetadataProvider.INSTANCE);
    //特质
    this.emptyTraitSet = planner.emptyTraitSet();
    assert emptyTraitSet.size() == planner.getRelTraitDefs().size();
  }

DefaultRelMetadataProvider构造函数提供很多规则,可以自己去看。

protected DefaultRelMetadataProvider() {
    super(
        ImmutableList.of(
            RelMdPercentageOriginalRows.SOURCE,
            RelMdColumnOrigins.SOURCE,
            RelMdExpressionLineage.SOURCE,
            RelMdTableReferences.SOURCE,
            RelMdNodeTypes.SOURCE,
            RelMdRowCount.SOURCE,
            RelMdMaxRowCount.SOURCE,
            RelMdMinRowCount.SOURCE,
            RelMdUniqueKeys.SOURCE,
            RelMdColumnUniqueness.SOURCE,
            RelMdPopulationSize.SOURCE,
            RelMdSize.SOURCE,
            RelMdParallelism.SOURCE,
            RelMdDistribution.SOURCE,
            RelMdMemory.SOURCE,
            RelMdDistinctRowCount.SOURCE,
            RelMdSelectivity.SOURCE,
            RelMdExplainVisibility.SOURCE,
            RelMdPredicates.SOURCE,
            RelMdAllPredicates.SOURCE,
            RelMdCollation.SOURCE));
  }

回到RelOptCluster,继续往下走
SqlToRelConverter.java
创建converter 完成SqlNode 到 RelNode的转换

 @Deprecated // to be removed before 2.0
  public SqlToRelConverter(
      RelOptTable.ViewExpander viewExpander,
      SqlValidator validator,  //SQL校验器
      Prepare.CatalogReader catalogReader,
      RelOptPlanner planner,
      RexBuilder rexBuilder,
      SqlRexConvertletTable convertletTable) {
    this(viewExpander, validator, catalogReader,
        RelOptCluster.create(planner, rexBuilder), convertletTable,
        Config.DEFAULT);
  }

接下来完成SqlNode 到RelNode转换

converter.convertQuery(node, false, true);

这个过程中,有校验的方法,我们一起来看看

public SqlNode validate(SqlNode topNode) {
    SqlValidatorScope scope = new EmptyScope(this);
    scope = new CatalogScope(scope, ImmutableList.of("CATALOG"));
    final SqlNode topNode2 = validateScopedExpression(topNode, scope);
    final RelDataType type = getValidatedNodeType(topNode2);
    Util.discard(type);
    return topNode2;
  }

看看怎么具体做validate:
先来看看Scope:
上图


5501600-05fd45fe2a9f0973.png
Scope

图上,有很多个***Scope。

convertQuery()方法中有

RelNode result = convertQueryRecursive(query, top, null).rel;

得到RelRoot(RelNode树的根节点)

protected RelRoot convertQueryRecursive(SqlNode query, boolean top,
      RelDataType targetRowType) {
    final SqlKind kind = query.getKind();
    switch (kind) {
    case SELECT:
      return RelRoot.of(convertSelect((SqlSelect) query, top), kind);
    case INSERT:
      return RelRoot.of(convertInsert((SqlInsert) query), kind);
    case DELETE:
      return RelRoot.of(convertDelete((SqlDelete) query), kind);
    case UPDATE:
      return RelRoot.of(convertUpdate((SqlUpdate) query), kind);
    case MERGE:
      return RelRoot.of(convertMerge((SqlMerge) query), kind);
    case UNION:
    case INTERSECT:
    case EXCEPT:
      return RelRoot.of(convertSetOp((SqlCall) query), kind);
    case WITH:
      return convertWith((SqlWith) query, top);
    case VALUES:
      return RelRoot.of(convertValues((SqlCall) query, targetRowType), kind);
    default:
      throw new AssertionError("not a query: " + query);
    }
  }

我们来看:RelRoot.of(convertSelect((SqlSelect) query, top), kind);

/**
   * Converts a SELECT statement's parse tree into a relational expression.
   */
  public RelNode convertSelect(SqlSelect select, boolean top) {
    final SqlValidatorScope selectScope = validator.getWhereScope(select);
    final Blackboard bb = createBlackboard(selectScope, null, top);
    convertSelectImpl(bb, select);
    return bb.root;
  }

中间有一些方法没有看懂,稍后补上。
来看:
RelNode optimized = planner.findBestExp();

public RelNode findBestExp() {
    ensureRootConverters();
    registerMaterializations();
    int cumulativeTicks = 0;
    for (VolcanoPlannerPhase phase : VolcanoPlannerPhase.values()) {
      setInitialImportance();

      RelOptCost targetCost = costFactory.makeHugeCost();
      int tick = 0;
      int firstFiniteTick = -1;
      int splitCount = 0;
      int giveUpTick = Integer.MAX_VALUE;

      while (true) {
        ++tick;
        ++cumulativeTicks;
        if (root.bestCost.isLe(targetCost)) {
          if (firstFiniteTick < 0) {
            firstFiniteTick = cumulativeTicks;

            clearImportanceBoost();
          }
          if (ambitious) {
            // Choose a slightly more ambitious target cost, and
            // try again. If it took us 1000 iterations to find our
            // first finite plan, give ourselves another 100
            // iterations to reduce the cost by 10%.
            targetCost = root.bestCost.multiplyBy(0.9);
            ++splitCount;
            if (impatient) {
              if (firstFiniteTick < 10) {
                // It's possible pre-processing can create
                // an implementable plan -- give us some time
                // to actually optimize it.
                giveUpTick = cumulativeTicks + 25;
              } else {
                giveUpTick =
                    cumulativeTicks
                        + Math.max(firstFiniteTick / 10, 25);
              }
            }
          } else {
            break;
          }
        } else if (cumulativeTicks > giveUpTick) {
          // We haven't made progress recently. Take the current best.
          break;
        } else if (root.bestCost.isInfinite() && ((tick % 10) == 0)) {
          injectImportanceBoost();
        }

        LOGGER.debug("PLANNER = {}; TICK = {}/{}; PHASE = {}; COST = {}",
            this, cumulativeTicks, tick, phase.toString(), root.bestCost);

        VolcanoRuleMatch match = ruleQueue.popMatch(phase);
        if (match == null) {
          break;
        }

        assert match.getRule().matches(match);
        match.onMatch();

        // The root may have been merged with another
        // subset. Find the new root subset.
        root = canonize(root);
      }

      ruleQueue.phaseCompleted(phase);
    }
    if (LOGGER.isTraceEnabled()) {
      StringWriter sw = new StringWriter();
      final PrintWriter pw = new PrintWriter(sw);
      dump(pw);
      pw.flush();
      LOGGER.trace(sw.toString());
    }
    RelNode cheapest = root.buildCheapestPlan(this);
    if (LOGGER.isDebugEnabled()) {
      LOGGER.debug(
          "Cheapest plan:\n{}", RelOptUtil.toString(cheapest, SqlExplainLevel.ALL_ATTRIBUTES));

      LOGGER.debug("Provenance:\n{}", provenance(cheapest));
    }
    return cheapest;
  }

细节稍后补上。
来看:

5501600-ea8fb852cdc1f8b6.png

Optimize RelNode

RelNode optimized = planner.findBestExp();
展开阅读全文

没有更多推荐了,返回首页