Elementary Methods in Number Theory Theorem 1.1 Division algorithm

(Division algorithm) 令 $a$ 和 $d$ 为整数且 $d \geq 1$.则存在唯一的整数 $q$ 与 $r$ 使得 $$a=dq+r$$ 且$$0\leq r\leq d-1$$

Proof:根据自然数的公理化构造及其性质定理16可知,当$a$是自然数时,存在性已经得证.当$a$是负整数时,我们知道
$$-a=dq+r,0\leq r\leq d-1$$
所以当$r>0$时,
$$a=d(-q-1)+(d-r)$$
当$r=0$时,很容易.

 

这样子,存在性就证完了.下面证明唯一性:

若存在$q',r'$,使得

$$a=dq'+r'$$则$$d(q-q')+(r-r')=0$$则$d|(r-r')$,这只能推出$r=r'$(为什么?).因此$r=r'$,$q=q'$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/09/3828162.html

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值