Elementary Methods in Number Theory Theorem 1.1 Division algorithm

(Division algorithm) 令 $a$ 和 $d$ 为整数且 $d \geq 1$.则存在唯一的整数 $q$ 与 $r$ 使得 $$a=dq+r$$ 且$$0\leq r\leq d-1$$

Proof:根据自然数的公理化构造及其性质定理16可知,当$a$是自然数时,存在性已经得证.当$a$是负整数时,我们知道
$$-a=dq+r,0\leq r\leq d-1$$
所以当$r>0$时,
$$a=d(-q-1)+(d-r)$$
当$r=0$时,很容易.

 

这样子,存在性就证完了.下面证明唯一性:

若存在$q',r'$,使得

$$a=dq'+r'$$则$$d(q-q')+(r-r')=0$$则$d|(r-r')$,这只能推出$r=r'$(为什么?).因此$r=r'$,$q=q'$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/09/3828162.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值