[BZOJ3576]江南乐

挺好的题

我们算出每个数的sg值后异或起来即可

对于$n$,我们要求$sg_n$

朴素的想法是枚举把$n$个石子分成$m$堆,有$m-n\%m$堆大小为$\left\lfloor\frac nm\right\rfloor$的石子,有$n\%m$堆大小为$\left\lfloor\frac nm\right\rfloor+1$的石子,因为是异或所以只有奇数堆的石子对$sg_n$有贡献,直接算出来再求mex即可

考虑优化,暴力是枚举$2\leq m\leq n$,因为当$\left\lfloor\frac nm\right\rfloor$相同时奇偶性相同的$m$算出来的答案是一样的,所以我们只需枚举所有使得$\left\lfloor\frac nm\right\rfloor$不同的$m$,用$m$和$m+1$更新答案即可

用记忆化搜索记录答案即可,时间复杂度可能是$O\left(a\sqrt a\right)$,其中$a$是数字的大小

#include<stdio.h>
#include<string.h>
int f[100010],v[1000010],M,F;
void get(int n){
	if(~f[n])return;
	if(n<F){
		f[n]=0;
		return;
	}
	int i,nex,s;
	for(i=2;i<=n;i=nex+1){
		nex=n/(n/i);
		if(f[n/i]==-1)get(n/i);
		if(n!=2&&f[n/i+1]==-1)get(n/i+1);
	}
	M++;
	for(i=2;i<=n;i=nex+1){
		nex=n/(n/i);
		s=0;
		if(n%i&1)s^=f[n/i+1];
		if((i-n%i)&1)s^=f[n/i];
		v[s]=M;
		if(i<nex){
			s=0;
			if(n%(i+1)&1)s^=f[n/i+1];
			if((i+1-n%(i+1))&1)s^=f[n/i];
			v[s]=M;
		}
	}
	for(i=0;v[i]==M;i++);
	f[n]=i;
}
int main(){
	int T,n,x,s;
	scanf("%d%d",&T,&F);
	memset(f,-1,sizeof(f));
	while(T--){
		scanf("%d",&n);
		s=0;
		while(n--){
			scanf("%d",&x);
			get(x);
			s^=f[x];
		}
		putchar(s?'1':'0');
		putchar(' ');
	}
}

转载于:https://www.cnblogs.com/jefflyy/p/9265440.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值