挺好的题
我们算出每个数的sg值后异或起来即可
对于$n$,我们要求$sg_n$
朴素的想法是枚举把$n$个石子分成$m$堆,有$m-n\%m$堆大小为$\left\lfloor\frac nm\right\rfloor$的石子,有$n\%m$堆大小为$\left\lfloor\frac nm\right\rfloor+1$的石子,因为是异或所以只有奇数堆的石子对$sg_n$有贡献,直接算出来再求mex即可
考虑优化,暴力是枚举$2\leq m\leq n$,因为当$\left\lfloor\frac nm\right\rfloor$相同时奇偶性相同的$m$算出来的答案是一样的,所以我们只需枚举所有使得$\left\lfloor\frac nm\right\rfloor$不同的$m$,用$m$和$m+1$更新答案即可
用记忆化搜索记录答案即可,时间复杂度可能是$O\left(a\sqrt a\right)$,其中$a$是数字的大小
#include<stdio.h>
#include<string.h>
int f[100010],v[1000010],M,F;
void get(int n){
if(~f[n])return;
if(n<F){
f[n]=0;
return;
}
int i,nex,s;
for(i=2;i<=n;i=nex+1){
nex=n/(n/i);
if(f[n/i]==-1)get(n/i);
if(n!=2&&f[n/i+1]==-1)get(n/i+1);
}
M++;
for(i=2;i<=n;i=nex+1){
nex=n/(n/i);
s=0;
if(n%i&1)s^=f[n/i+1];
if((i-n%i)&1)s^=f[n/i];
v[s]=M;
if(i<nex){
s=0;
if(n%(i+1)&1)s^=f[n/i+1];
if((i+1-n%(i+1))&1)s^=f[n/i];
v[s]=M;
}
}
for(i=0;v[i]==M;i++);
f[n]=i;
}
int main(){
int T,n,x,s;
scanf("%d%d",&T,&F);
memset(f,-1,sizeof(f));
while(T--){
scanf("%d",&n);
s=0;
while(n--){
scanf("%d",&x);
get(x);
s^=f[x];
}
putchar(s?'1':'0');
putchar(' ');
}
}