最近大牛 姜承尧 也在测试Row Cache,发现使用sysbench来进行测试效果不是很明显.
分析了一下 sysbench的三个测试场景uniform,gaussian,special都不是很符合Row Cache的使用场景导致效果不明显
先来解释一下 Row Cache要解决的问题主要是在有 热门数据 且热门数据分布 很离散 的情况下Page缓存导致的内存利用率低的问题,我们做过测试,在innodb内部对Page访问打点的统计来看,一个row有500字节大小,热门数据大概占千分之一地情况下,Page缓存的利用率(就是16K读进来,真正被上层read的数据大小的比例)在20%以下,就是说 80%的内存是被浪费的.
而现在MySQL的应用由于数据量巨大使用MySQL后都是分库分表,而且为了能每个库没有热点,基本都是按取模的方式进行分表,导致热门数据基本都是很平均的分布在各个不同的Page上.而分库分表之后基本没有了range查询,都是类似select from test where uuid=XX这样的key-value类型的查询,这样的查询就导致了内存利用率低的问题
Row Cache就是为了解决这样的场景(一般互联网应用规模到了一定程度应该都会有这个问题).
接下来我们看看sysbench 3个场景的实现 uniform:
*
1
2
3
4
|
unsigned ``int
rnd_func_uniform(``void``)
{
``return
1 + sb_rnd() % args.table_size;
}
|
- 完全按随机数从整个table_size取id
-
这个场景下没有热门数据一说* gaussian:
-
12345678910
unsigned ``int
rnd_func_gaussian(``void``)
{
``int
sum;
``unsigned ``int
i;
``for``(i=0, sum=0; i < args.dist_iter; i++)
``sum += (1 + sb_rnd() % args.table_size);
``return
sum / args.dist_iter;
}
-
按高斯分布取id,默认取值范围也是整个tabel_size,默认方差是12,当然方差越高,分布是越集中的.但也会导致结算量大增
- 这个场景下基本也是没有热门数据一说* special:
既然都不符合,那我们就来改一下sysbench让他符合Row Cache的场景.3个场景来说special最符合,只要改一行代码就可以啦
1234567891011121314151617181920212223242526272829303132333435363738394041unsigned ``int
rnd_func_special(``void``)
{
``int
sum = 0;
``unsigned ``int
i;
``unsigned ``int
d;
``unsigned ``int
res;
``unsigned ``int
range_size;
``if
(args.table_size == 0)
``return
0;
``/* Increase range size for special values. */
``range_size = args.table_size * (100 / (100 - args.dist_res));
``/* Generate evenly distributed one at this stage */
``res = (1 + sb_rnd() % range_size);
``/* For first part use gaussian distribution */
``if
(res <= args.table_size)
``{
``for``(i = 0; i < args.dist_iter; i++)
``{
``sum += (1 + sb_rnd() % args.table_size);
``}
``return
sum / args.dist_iter;
``}
``/*
``* For second part use even distribution mapped to few items
``* We shall distribute other values near by the center
``*/
``d = args.table_size * args.dist_pct / 100;
``if
(d < 1)
``d = 1;
``res %= d;
``/* Now we have res values in SPECIAL_PCT range of the data */
``//res += (args.table_size / 2 - args.table_size * args.dist_pct / (100 * 2));
``res *= (100/args.dist_pct); ``//这下够离散了
``return
res;
}
可以直接下载我修改好的包哦
参考执行命令:
sysbench --test=oltp --oltp-test-mode=simple --oltp-skip-trx=on --oltp-table-size=80000000 --oltp-range-size=1 --mysql-host=localhost --mysql-user=xx --mysql-password=xx --oltp-read-only=on --init-rng=on --num-threads=70 --oltp-dist-type=special --oltp-dist-pct=1 --oltp-dist-res=80 --max-requests=0 --max-time=1800 run
</div>
本文来源于"阿里中间件团队播客",原文发表时间" 2011-09-10 "