使用sysbench来测试Row Cache解惑


最近大牛 姜承尧  也在测试Row Cache,发现使用sysbench来进行测试效果不是很明显.

分析了一下 sysbench的三个测试场景uniform,gaussian,special都不是很符合Row Cache的使用场景导致效果不明显

先来解释一下 Row Cache要解决的问题主要是在有 热门数据 且热门数据分布 很离散 的情况下Page缓存导致的内存利用率低的问题,我们做过测试,在innodb内部对Page访问打点的统计来看,一个row有500字节大小,热门数据大概占千分之一地情况下,Page缓存的利用率(就是16K读进来,真正被上层read的数据大小的比例)在20%以下,就是说 80%的内存是被浪费的.

而现在MySQL的应用由于数据量巨大使用MySQL后都是分库分表,而且为了能每个库没有热点,基本都是按取模的方式进行分表,导致热门数据基本都是很平均的分布在各个不同的Page上.而分库分表之后基本没有了range查询,都是类似select  from test where uuid=XX这样的key-value类型的查询,这样的查询就导致了内存利用率低的问题

Row Cache就是为了解决这样的场景(一般互联网应用规模到了一定程度应该都会有这个问题).

接下来我们看看sysbench 3个场景的实现 
uniform:

*
?
1
2
3
4
unsigned ``int  rnd_func_uniform(``void``)
{
  ``return  1 + sb_rnd() % args.table_size;
}
  • 完全按随机数从整个table_size取id
  • 这个场景下没有热门数据一说* gaussian:

  • ?
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    unsigned ``int  rnd_func_gaussian(``void``)
    {
      ``int           sum;
      ``unsigned ``int  i;
     
      ``for``(i=0, sum=0; i < args.dist_iter; i++)
        ``sum += (1 + sb_rnd() % args.table_size);
     
      ``return  sum / args.dist_iter;
    }
  • 按高斯分布取id,默认取值范围也是整个tabel_size,默认方差是12,当然方差越高,分布是越集中的.但也会导致结算量大增

  • 这个场景下基本也是没有热门数据一说* special:
    既然都不符合,那我们就来改一下sysbench让他符合Row Cache的场景.3个场景来说special最符合,只要改一行代码就可以啦

    ?
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    unsigned ``int  rnd_func_special(``void``)
    {
      ``int           sum = 0;
      ``unsigned ``int  i;
      ``unsigned ``int  d;
      ``unsigned ``int  res;
      ``unsigned ``int  range_size;
     
      ``if  (args.table_size == 0)
        ``return  0;
     
      ``/* Increase range size for special values. */
      ``range_size = args.table_size * (100 / (100 - args.dist_res));
     
      ``/* Generate evenly distributed one at this stage  */
      ``res = (1 + sb_rnd() % range_size);
     
      ``/* For first part use gaussian distribution */
      ``if  (res <= args.table_size)
      ``{
        ``for``(i = 0; i < args.dist_iter; i++)
        ``{
          ``sum += (1 + sb_rnd() % args.table_size);
        ``}
        ``return  sum / args.dist_iter;
      ``}
     
      ``/*
       ``* For second part use even distribution mapped to few items
       ``* We shall distribute other values near by the center
       ``*/
      ``d = args.table_size * args.dist_pct / 100;
      ``if  (d < 1)
        ``d = 1;
      ``res %= d;
     
      ``/* Now we have res values in SPECIAL_PCT range of the data */
      ``//res += (args.table_size / 2 - args.table_size * args.dist_pct / (100 * 2));
      ``res *= (100/args.dist_pct); ``//这下够离散了
      ``return  res;
    }

 

可以直接下载我修改好的包哦

http://code.google.com/p/row-cache-for-innodb/downloads/detail?name=sysbench-0.4.8.tar.gz&can=2&q=#makechanges

 

参考执行命令:

sysbench --test=oltp --oltp-test-mode=simple  --oltp-skip-trx=on
--oltp-table-size=80000000  --oltp-range-size=1
--mysql-host=localhost --mysql-user=xx --mysql-password=xx
--oltp-read-only=on --init-rng=on --num-threads=70
--oltp-dist-type=special --oltp-dist-pct=1 --oltp-dist-res=80
--max-requests=0 --max-time=1800 run
</div>

 本文来源于"阿里中间件团队播客",原文发表时间"  2011-09-10 "

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值